95
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bats as animal reservoirs for the SARS coronavirus: Hypothesis proved after 10 years of virus hunting

      editorial

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, the team led by Dr. Zhengli Shi from Wuhan Institute of Virology, Chinese Academy of Sciences, and Dr. Peter Daszak from Ecohealth Alliance identified SL-CoVs in Chinese horseshoe bats that were 95% identical to human SARS-CoV and were able to use human angiotensin-converting enzyme 2 (ACE2) receptor for docking and entry. Remarkably, they isolated the first known live bat SL-CoV that replicates in human and related cells. Their findings provide clear evidence that some SL-CoVs circulating in bats are capable of infecting and replicating in human (Ge X Y, et al., 2013).

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome

          The severe acute respiratory syndrome (SARS) has recently been identified as a new clinical entity. SARS is thought to be caused by an unknown infectious agent. Clinical specimens from patients with SARS were searched for unknown viruses with the use of cell cultures and molecular techniques. A novel coronavirus was identified in patients with SARS. The virus was isolated in cell culture, and a sequence 300 nucleotides in length was obtained by a polymerase-chain-reaction (PCR)-based random-amplification procedure. Genetic characterization indicated that the virus is only distantly related to known coronaviruses (identical in 50 to 60 percent of the nucleotide sequence). On the basis of the obtained sequence, conventional and real-time PCR assays for specific and sensitive detection of the novel virus were established. Virus was detected in a variety of clinical specimens from patients with SARS but not in controls. High concentrations of viral RNA of up to 100 million molecules per milliliter were found in sputum. Viral RNA was also detected at extremely low concentrations in plasma during the acute phase and in feces during the late convalescent phase. Infected patients showed seroconversion on the Vero cells in which the virus was isolated. The novel coronavirus might have a role in causing SARS. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel coronavirus associated with severe acute respiratory syndrome.

            A worldwide outbreak of severe acute respiratory syndrome (SARS) has been associated with exposures originating from a single ill health care worker from Guangdong Province, China. We conducted studies to identify the etiologic agent of this outbreak. We received clinical specimens from patients in seven countries and tested them, using virus-isolation techniques, electron-microscopical and histologic studies, and molecular and serologic assays, in an attempt to identify a wide range of potential pathogens. None of the previously described respiratory pathogens were consistently identified. However, a novel coronavirus was isolated from patients who met the case definition of SARS. Cytopathological features were noted in Vero E6 cells inoculated with a throat-swab specimen. Electron-microscopical examination revealed ultrastructural features characteristic of coronaviruses. Immunohistochemical and immunofluorescence staining revealed reactivity with group I coronavirus polyclonal antibodies. Consensus coronavirus primers designed to amplify a fragment of the polymerase gene by reverse transcription-polymerase chain reaction (RT-PCR) were used to obtain a sequence that clearly identified the isolate as a unique coronavirus only distantly related to previously sequenced coronaviruses. With specific diagnostic RT-PCR primers we identified several identical nucleotide sequences in 12 patients from several locations, a finding consistent with a point-source outbreak. Indirect fluorescence antibody tests and enzyme-linked immunosorbent assays made with the new isolate have been used to demonstrate a virus-specific serologic response. This virus may never before have circulated in the U.S. population. A novel coronavirus is associated with this outbreak, and the evidence indicates that this virus has an etiologic role in SARS. Because of the death of Dr. Carlo Urbani, we propose that our first isolate be named the Urbani strain of SARS-associated coronavirus. Copyright 2003 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China.

              Y Guan (2003)
              A novel coronavirus (SCoV) is the etiological agent of severe acute respiratory syndrome (SARS). SCoV-like viruses were isolated from Himalayan palm civets found in a live-animal market in Guangdong, China. Evidence of virus infection was also detected in other animals (including a raccoon dog, Nyctereutes procyonoides) and in humans working at the same market. All the animal isolates retain a 29-nucleotide sequence that is not found in most human isolates. The detection of SCoV-like viruses in small, live wild mammals in a retail market indicates a route of interspecies transmission, although the natural reservoir is not known.
                Bookmark

                Author and article information

                Contributors
                +86-27-87197180 , +86-27-87197180 , huzh@wh.iov.cn
                Journal
                Virol Sin
                Virol Sin
                Virologica Sinica
                Wuhan Institute of Virology, CAS (Heidelberg )
                1674-0769
                1995-820X
                30 October 2013
                December 2013
                : 28
                : 6
                : 315-317
                Affiliations
                GRID grid.9227.e, ISNI 0000000119573309, State Key Laboratory of Virology, Wuhan Institute of Virology, , Chinese Academy of Sciences, ; Wuhan, 430071 China
                Article
                3402
                10.1007/s12250-013-3402-x
                7091109
                24174406
                0db0bd2d-8388-4205-88d7-aecd0e152479
                © Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2013

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 28 October 2013
                : 30 October 2013
                Categories
                Comment
                Custom metadata
                © Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2013

                severe acute respiratory syndrome,middle east respiratory syndrome,receptor binding domain,wuhan institute

                Comments

                Comment on this article