There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
A newly developed fluorescence measuring system is employed for the recording of chlorophyll fluorescence induction kinetics (Kautsky-effect) and for the continuous determination of the photochemical and non-photochemical components of fluorescence quenching. The measuring system, which is based on a pulse modulation principle, selectively monitors the fluorescence yield of a weak measuring beam and is not affected even by extremely high intensities of actinic light. By repetitive application of short light pulses of saturating intensity, the fluorescence yield at complete suppression of photochemical quenching is repetitively recorded, allowing the determination of continuous plots of photochemical quenching and non-photochemical quenching. Such plots are compared with the time courses of variable fluorescence at different intensities of actinic illumination. The differences between the observed kinetics are discussed. It is shown that the modulation fluorometer, in combination with the application of saturating light pulses, provides essential information beyond that obtained with conventional chlorophyll fluorometers.
The photosynthetic CO2-fixation rates, chlorophyll content, chloroplast ultrastructure and other leaf characteristics (e.g. variable fluorescence, stomata density, soluble carbohydrate content) were studied in a comparative way in sun and shade leaves of beech (Fagus sylvatica) and in high-light and low-light seedlings. 1. Sun leaves of the beech possess a smaller leaf area, higher dry weight, lower water content, higher stomata density, higher chlorophyll a/b ratios and are thicker than the shade leaves. Sun leaves on the average contain more chlorophyll in a leaf area unit; the shade leaf exhibits more chlorophyll on a dry weight basis. Sun leaves show higher rates for dark respiration and a higher light saturation of photosynthetic CO2-fixation. Above 2000 lux they are more efficient in photosynthetic quantum conversion than the shade leaves. 2. The development of HL-radish plants proceeds much faster than that of LL-plants. The cotyledons of HL-plants show a higher dry weight, lower water content, a higher ratio of chlorophyll a/b and a higher gross photosynthesis rate than the cotyledons of the LL-plants, which possess a higher chlorophyll content per dry weight basis. The large area of the HL-cotyledon on the one hand, as well as the higher stomata density and the higher respiration rate in the LL-cotyledon on the other hand, are not in agreement with the characteristics of sun and shade leaves respectively. 3. The development, growth and wilting of wheat leaves and the appearance of the following leaves (leaf succession) is much faster at high quanta fluence rates than in weak light. The chlorophyll content is higher in the HL-leaf per unit leaf area and in the LL-leaf per g dry weight. There are no differences in the stomata density and leaf area between the HL- and LL-leaf. There are fewer differences between HL- and LL-leaves than in beech or radish leaves. 4. The chloroplast ultrastructure of shade-type chloroplasts (shade leaves, LL-leaves) is not only characterized by a much higher number of thylakoids per granum and a higher stacking degree of thylakoids, but also by broader grana than in sun-type chloroplasts (sun leaves, HL-leaves). The chloroplasts of sun leaves and of HL-leaves exhibit large starch grains. 5. Shade leaves and LL-leaves exhibit a higher maximum chlorophyll fluorescence and it takes more time for the fluorescence to decline to the steady state than in sun and HL-leaves. The variable fluorescence VF (ratio of fluorescence decrease to steady state fluorescence) is always higher in the sun and HL-leaf of the same physiological stage (maximum chlorophyll content of the leaf) than in the shade and LL-leaf. The fluorescence emission spectra of sun and HL-leaves show a higher proportion of chlorophyli fluorescence in the second emission maximum F2 than shade and LL-leaves. 6. The level of soluble carbohydrates (reducing sugars) is significantly higher in sun and HL-leaves than in shade and LL-leaves and even reflects changes in the amounts of the daily incident light. 7. Some but not all characteristics of mature sun and shade leaves are found in HL- and LL-leaves of seedlings. Leaf thickness, dry weight, chlorophyll content, soluble carbohydrate level, photosynthetic CO2-fixation, height and width of grana stacks and starch content, are good parameters to describe the differences between LL- and HL-leaves; with some reservations concerning age and physiological stage of leaf, a/b ratios, chlorophyll content per leaf area unit and the variable fluorescence are also suitable.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.