3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Public Perception and Hand Hygiene Behavior During COVID-19 Pandemic in Indonesia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hand hygiene practices are important not only during the corona virus disease 2019 (COVID-19) pandemic, but also critical to prevent the possible spread of other infectious diseases. This study aims to examine the current hand hygiene behaviors during the COVID-19 pandemic, post pandemic behavior intentions, and the relationship between behavior, psychosocial and contextual factors. A cross-sectional online survey was conducted from 28 May to 12 June 2020, with 896 valid responses obtained from Indonesian citizens over 18 years old. The survey questions included demographic characteristics, individual practices, risk perceptions, attitude, norm factors and ability factors related to hand hygiene during the COVID-19 pandemic. Descriptive analysis, chi square and multiple logistic regression tests were used to analyse the data. The results showed that 82.32% of female respondents and 73.37% male respondents reported handwashing practice 8 times or more per day during COVID-19 pandemic. Participants who perceived themselves at higher risk of contracting SARS-CoV-2 (OR 7.08, 2.26–22.17), had less negative perception toward the practice (OR 1.93, 1.32–2.82), perceived handwashing as an effective preventive measure (OR 1.77, 1.23–2.54), were female (OR 1.71, 1.21–2.41), perceived a more supportive norm (OR 1.68, 1.15–2.44) and noticed more barriers in access to handwashing facilities (OR 1.57, 1.05–2.36) were more likely to engage in hand hygiene practice more frequently during the pandemic. In conclusion, the majority of respondents did increase their frequency of hand hygiene practices during COVID-19 pandemic. In line with previous studies in other pandemic contexts, sex, perceived susceptibility and effectiveness are important predictors of hand hygiene practices, which are similar to findings from previous studies in other pandemic contexts. Addressing social norm related to the perceived hand hygiene practices of friends and important people is a potential health promotion strategy by creating hand hygiene norms in the community.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          The theory of planned behavior

          Icek Ajzen (1991)
          Organizational Behavior and Human Decision Processes, 50(2), 179-211
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            The COVID‐19 epidemic

            The current outbreak of the novel coronavirus SARS‐CoV‐2 (coronavirus disease 2019; previously 2019‐nCoV), epi‐centred in Hubei Province of the People’s Republic of China, has spread to many other countries. On 30. January 2020, the WHO Emergency Committee declared a global health emergency based on growing case notification rates at Chinese and international locations. The case detection rate is changing daily and can be tracked in almost real time on the website provided by Johns Hopkins University 1 and other forums. As of midst of February 2020, China bears the large burden of morbidity and mortality, whereas the incidence in other Asian countries, in Europe and North America remains low so far. Coronaviruses are enveloped, positive single‐stranded large RNA viruses that infect humans, but also a wide range of animals. Coronaviruses were first described in 1966 by Tyrell and Bynoe, who cultivated the viruses from patients with common colds 2. Based on their morphology as spherical virions with a core shell and surface projections resembling a solar corona, they were termed coronaviruses (Latin: corona = crown). Four subfamilies, namely alpha‐, beta‐, gamma‐ and delta‐coronaviruses exist. While alpha‐ and beta‐coronaviruses apparently originate from mammals, in particular from bats, gamma‐ and delta‐viruses originate from pigs and birds. The genome size varies between 26 kb and 32 kb. Among the seven subtypes of coronaviruses that can infect humans, the beta‐coronaviruses may cause severe disease and fatalities, whereas alpha‐coronaviruses cause asymptomatic or mildly symptomatic infections. SARS‐CoV‐2 belongs to the B lineage of the beta‐coronaviruses and is closely related to the SARS‐CoV virus 3, 4. The major four structural genes encode the nucleocapsid protein (N), the spike protein (S), a small membrane protein (SM) and the membrane glycoprotein (M) with an additional membrane glycoprotein (HE) occurring in the HCoV‐OC43 and HKU1 beta‐coronaviruses 5. SARS‐CoV‐2 is 96% identical at the whole‐genome level to a bat coronavirus 4. SARS‐CoV‐2 apparently succeeded in making its transition from animals to humans on the Huanan seafood market in Wuhan, China. However, endeavours to identify potential intermediate hosts seem to have been neglected in Wuhan and the exact route of transmission urgently needs to be clarified. The initial clinical sign of the SARS‐CoV‐2‐related disease COVID‐19 which allowed case detection was pneumonia. More recent reports also describe gastrointestinal symptoms and asymptomatic infections, especially among young children 6. Observations so far suggest a mean incubation period of five days 7 and a median incubation period of 3 days (range: 0–24 days) 8. The proportion of individuals infected by SARS‐CoV‐2 who remain asymptomatic throughout the course of infection has not yet been definitely assessed. In symptomatic patients, the clinical manifestations of the disease usually start after less than a week, consisting of fever, cough, nasal congestion, fatigue and other signs of upper respiratory tract infections. The infection can progress to severe disease with dyspnoea and severe chest symptoms corresponding to pneumonia in approximately 75% of patients, as seen by computed tomography on admission 8. Pneumonia mostly occurs in the second or third week of a symptomatic infection. Prominent signs of viral pneumonia include decreased oxygen saturation, blood gas deviations, changes visible through chest X‐rays and other imaging techniques, with ground glass abnormalities, patchy consolidation, alveolar exudates and interlobular involvement, eventually indicating deterioration. Lymphopenia appears to be common, and inflammatory markers (C‐reactive protein and proinflammatory cytokines) are elevated. Recent investigations of 425 confirmed cases demonstrate that the current epidemic may double in the number of affected individuals every seven days and that each patient spreads infection to 2.2 other individuals on average (R0) 6. Estimates from the SARS‐CoV outbreak in 2003 reported an R0 of 3 9. A recent data‐driven analysis from the early phase of the outbreak estimates a mean R0 range from 2.2 to 3.58 10. Dense communities are at particular risk and the most vulnerable region certainly is Africa, due to dense traffic between China and Africa. Very few African countries have sufficient and appropriate diagnostic capacities and obvious challenges exist to handle such outbreaks. Indeed, the virus might soon affect Africa. WHO has identified 13 top‐priority countries (Algeria, Angola, Cote d’Ivoire, the Democratic Republic of the Congo, Ethiopia, Ghana, Kenya, Mauritius, Nigeria, South Africa, Tanzania, Uganda, Zambia) which either maintain direct links to China or a high volume of travel to China. Recent studies indicate that patients ≥60 years of age are at higher risk than children who might be less likely to become infected or, if so, may show milder symptoms or even asymptomatic infection 7. As of 13. February 2020, the case fatality rate of COVID‐19 infections has been approximately 2.2% (1370/60363; 13. February 2020, 06:53 PM CET); it was 9.6% (774/8096) in the SARS‐CoV epidemic 11 and 34.4% (858/2494) in the MERS‐CoV outbreak since 2012 12. Like other viruses, SARS‐CoV‐2 infects lung alveolar epithelial cells using receptor‐mediated endocytosis via the angiotensin‐converting enzyme II (ACE2) as an entry receptor 4. Artificial intelligence predicts that drugs associated with AP2‐associated protein kinase 1 (AAK1) disrupting these proteins may inhibit viral entry into the target cells 13. Baricitinib, used in the treatment of rheumatoid arthritis, is an AAK1 and Janus kinase inhibitor and suggested for controlling viral replication 13. Moreover, one in vitro and a clinical study indicate that remdesivir, an adenosine analogue that acts as a viral protein inhibitor, has improved the condition in one patient 14, 15. Chloroquine, by increasing the endosomal pH required for virus‐cell fusion, has the potential of blocking viral infection 15 and was shown to affect activation of p38 mitogen‐activated protein kinase (MAPK), which is involved in replication of HCoV‐229E 16. A combination of the antiretroviral drugs lopinavir and ritonavir significantly improved the clinical condition of SARS‐CoV patients 17 and might be an option in COVID‐19 infections. Further possibilities include leronlimab, a humanised monoclonal antibody (CCR5 antagonist), and galidesivir, a nucleoside RNA polymerase inhibitor, both of which have shown survival benefits in several deadly virus infections and are being considered as potential treatment candidates 18. Repurposing these available drugs for immediate use in treatment in SARS‐CoV‐2 infections could improve the currently available clinical management. Clinical trials presently registered at ClinicalTrials.gov focus on the efficacy of remdesivir, immunoglobulins, arbidol hydrochloride combined with interferon atomisation, ASC09F+Oseltamivir, ritonavir plus oseltamivir, lopinavir plus ritonavir, mesenchymal stem cell treatment, darunavir plus cobicistat, hydroxychloroquine, methylprednisolone and washed microbiota transplantation 19. Given the fragile health systems in most sub‐Saharan African countries, new and re‐emerging disease outbreaks such as the current COVID‐19 epidemic can potentially paralyse health systems at the expense of primary healthcare requirements. The impact of the Ebola epidemic on the economy and healthcare structures is still felt five years later in those countries which were affected. Effective outbreak responses and preparedness during emergencies of such magnitude are challenging across African and other lower‐middle‐income countries. Such situations can partly only be mitigated by supporting existing regional and sub‐Saharan African health structures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meta-analysis of the relationship between risk perception and health behavior: the example of vaccination.

              Risk perceptions are central to many health behavior theories. However, the relationship between risk perceptions and behavior, muddied by instances of inappropriate assessment and analysis, often looks weak. A meta-analysis of eligible studies assessing the bivariate association between adult vaccination and perceived likelihood, susceptibility, or severity was conducted. Thirty-four studies met inclusion criteria (N = 15,988). Risk likelihood (pooled r = .26), susceptibility (pooled r = .24), and severity (pooled r = .16) significantly predicted vaccination behavior. The risk perception-behavior relationship was larger for studies that were prospective, had higher quality risk measures, or had unskewed risk or behavior measures. The consistent relationships between risk perceptions and behavior, larger than suggested by prior meta-analyses, suggest that risk perceptions are rightly placed as core concepts in theories of health behavior. (c) 2007 APA, all rights reserved
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Public Health
                Front Public Health
                Front. Public Health
                Frontiers in Public Health
                Frontiers Media S.A.
                2296-2565
                13 May 2021
                2021
                13 May 2021
                : 9
                : 621800
                Affiliations
                [1] 1Department of Public Health and Preventive Medicine, Faculty of Medicine, Udayana University , Denpasar, Indonesia
                [2] 2Faculty of Medicine, Center for Public Health Innovation, Udayana University , Denpasar, Indonesia
                [3] 3Institute for Population and Social Research, Mahidol University , Nakorn Pathom, Thailand
                Author notes

                Edited by: Hailay Abrha Gesesew, Flinders University, Australia

                Reviewed by: Iffat Elbarazi, United Arab Emirates University, United Arab Emirates; Waqas Ahmed, Old Dominion University, United States; Md. Saiful Islam, Jahangirnagar University, Bangladesh

                *Correspondence: Ni Made Utami Dwipayanti utami_dwipayanti@ 123456unud.ac.id

                This article was submitted to Public Health Education and Promotion, a section of the journal Frontiers in Public Health

                Article
                10.3389/fpubh.2021.621800
                8155304
                34055709
                0b225e8a-cd99-47f4-8914-fc298e780399
                Copyright © 2021 Dwipayanti, Lubis and Harjana.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 October 2020
                : 15 April 2021
                Page count
                Figures: 4, Tables: 4, Equations: 0, References: 36, Pages: 12, Words: 7340
                Categories
                Public Health
                Original Research

                hand hygiene,covid-19,psychosocial factors,behavior,online survey

                Comments

                Comment on this article