3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The immunoglobulins of cartilaginous fishes

      , , ,
      Developmental & Comparative Immunology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Elephant shark genome provides unique insights into gnathostome evolution

          The emergence of jawed vertebrates (gnathostomes) from jawless vertebrates was accompanied by major morphological and physiological innovations, such as hinged jaws, paired fins and immunoglobulin-based adaptive immunity. Gnathostomes subsequently diverged into two groups, the cartilaginous fishes and the bony vertebrates. Here we report the whole-genome analysis of a cartilaginous fish, the elephant shark (Callorhinchus milii). We find that the C. milii genome is the slowest evolving of all known vertebrates, including the ‘living fossil’ coelacanth, and features extensive synteny conservation with tetrapod genomes, making it a good model for comparative analyses of gnathostome genomes. Our functional studies suggest that the lack of genes encoding secreted calcium-binding phosphoproteins in cartilaginous fishes explains the absence of bone in their endoskeleton. Furthermore, the adaptive immune system of cartilaginous fishes is unusual: it lacks the canonical CD4 co-receptor and most transcription factors, cytokines and cytokine receptors related to the CD4 lineage, despite the presence of polymorphic major histocompatibility complex class II molecules. It thus presents a new model for understanding the origin of adaptive immunity. Supplementary information The online version of this article (doi:10.1038/nature12826) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks.

            Immunoglobulin and T-cell receptor (TCR) molecules are central to the adaptive immune system. Sequence conservation, similarities in domain structure, and usage of similar recombination signal sequences and recombination machinery indicate that there was probably a time during evolution when an ancestral receptor diverged to the modern-day immunoglobulin and TCR. Other molecules that undergo rearrangement have not been described in vertebrates, nor have intermediates been identified that have features of both these gene families. We report here the isolation of a new member of the immunoglobulin superfamily from the nurse shark, Ginglymostoma cirratum, which contains one variable and five constant domains and is found as a dimer in serum.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases.

              The AID/APOBEC family (comprising AID, APOBEC1, APOBEC2, and APOBEC3 subgroups) contains members that can deaminate cytidine in RNA and/or DNA and exhibit diverse physiological functions (AID and APOBEC3 deaminating DNA to trigger pathways in adaptive and innate immunity; APOBEC1 mediating apolipoprotein B RNA editing). The founder member APOBEC1, which has been used as a paradigm, is an RNA-editing enzyme with proposed antecedents in yeast. Here, we have undertaken phylogenetic analysis to glean insight into the primary physiological function of the AID/APOBEC family. We find that although the family forms part of a larger superfamily of deaminases distributed throughout the biological world, the AID/APOBEC family itself is restricted to vertebrates with homologs of AID (a DNA deaminase that triggers antibody gene diversification) and of APOBEC2 (unknown function) identifiable in sequence databases from bony fish, birds, amphibians, and mammals. The cloning of an AID homolog from dogfish reveals that AID extends at least as far back as cartilaginous fish. Like mammalian AID, the pufferfish AID homolog can trigger deoxycytidine deamination in DNA but, consistent with its cold-blooded origin, is thermolabile. The fine specificity of its mutator activity and the biased codon usage in pufferfish IgV genes appear broadly similar to that of their mammalian counterparts, consistent with a coevolution of the antibody mutator and its substrate for the optimal targeting of somatic mutation during antibody maturation. By contrast, APOBEC1 and APOBEC3 are later evolutionary arrivals with orthologs not found in pufferfish (although synteny with mammals is maintained in respect of the flanking loci). We conclude that AID and APOBEC2 are likely to be the ancestral members of the AID/APOBEC family (going back to the beginning of vertebrate speciation) with both APOBEC1 and APOBEC3 being mammal-specific derivatives of AID and a complex set of domain shuffling underpinning the expansion and evolution of the primate APOBEC3s.
                Bookmark

                Author and article information

                Contributors
                Journal
                Developmental & Comparative Immunology
                Developmental & Comparative Immunology
                Elsevier BV
                0145305X
                February 2021
                February 2021
                : 115
                : 103873
                Article
                10.1016/j.dci.2020.103873
                32979434
                098680b4-37ae-4116-87f4-50aa41a63ad3
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article