5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Microfluidic wound-healing assay to assess the regenerative effect of HGF on wounded alveolar epithelium

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a microfluidic epithelial wound-healing assay that allows characterization of the effect of hepatocyte growth factor (HGF) on the regeneration of alveolar epithelium using a flow-focusing technique to create a regular wound in the epithelial monolayer. The phenotype of the epithelial cell was characterized using immunostaining for tight junction (TJ) proteins and transmission electron micrographs (TEMs) of cells cultured in the microfluidic system, a technique that is reported here for the first time. We demonstrate that alveolar epithelial cells cultured in a microfluidic environment preserve their phenotype before and after wounding. In addition, we report a wound-healing benefit induced by addition of HGF to the cell culture medium (19.2 vs. 13.5 μm h(-1) healing rate).

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Collective migration of an epithelial monolayer in response to a model wound.

          Using an original microfabrication-based technique, we experimentally study situations in which a virgin surface is presented to a confluent epithelium with no damage made to the cells. Although inspired by wound-healing experiments, the situation is markedly different from classical scratch wounding because it focuses on the influence of the free surface and uncouples it from the other possible contributions such as cell damage and/or permeabilization. Dealing with Madin-Darby canine kidney cells on various surfaces, we found that a sudden release of the available surface is sufficient to trigger collective motility. This migration is independent of the proliferation of the cells that mainly takes place on the fraction of the surface initially covered. We find that this motility is characterized by a duality between collective and individual behaviors. On the one hand, the velocity fields within the monolayer are very long range and involve many cells in a coordinated way. On the other hand, we have identified very active "leader cells" that precede a small cohort and destabilize the border by a fingering instability. The sides of the fingers reveal a pluricellular actin "belt" that may be at the origin of a mechanical signaling between the leader and the followers. Experiments performed with autocrine cells constitutively expressing hepatocyte growth factor (HGF) or in the presence of exogenous HGF show a higher average velocity of the border and no leader.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New mechanisms of pulmonary fibrosis.

            The understanding of the pathogenesis of pulmonary fibrosis continues to evolve. The initial hypothetical model suggested chronic inflammation as the cause of pulmonary fibrosis, whereas a subsequent hypothesis posited epithelial injury and impaired wound repair as the etiology of fibrosis without preceding inflammation. Over the past decade, several concepts have led to refinement of these hypotheses. These include the following: (1) the importance of the integrity of the alveolar-capillary barrier basement membrane (BM) to conserving the architecture of the injured lung; (2) conversely, that the failure of reepithelialization and reendothelialization of this BM results in pathologic fibrosis; (3) transforming growth factor-beta is necessary but not sufficient to the pathologic fibrosis of the lungs; (4) the role of persistent antigens in the pathogenesis of usual interstitial pneumonia; and (5) the contribution of epithelial-to-mesenchymal transformation and bone marrow-derived progenitor cells in the pathogenesis of lung fibrosis. In this review, we will discuss these evolving conceptual mechanisms for the pathogenesis of pulmonary fibrosis relevant to idiopathic pulmonary fibrosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Patterning cells and their environments using multiple laminar fluid flows in capillary networks.

              This paper describes the use of laminar flow of liquids in capillary systems to pattern the cell culture substrate, to perform patterned cell deposition, and to pattern the cell culture media. We demonstrate the patterning of the cell culture substrate with different proteins, the patterning of different types of cells adjacent to each other, the patterned delivery of chemicals to adhered cells, and performing enzymatic reactions over select cells or over a portion of a cell. This method offers a way to simultaneously control the characteristics of the surface to which cells are attached, the type of cells that are in their vicinity, and the kind of media that cells or part of a cell are exposed to. The method is experimentally simple, highly adaptable, and requires no special equipment except for an elastomeric relief that can be readily prepared by rapid prototyping.
                Bookmark

                Author and article information

                Journal
                LCAHAM
                Lab Chip
                Lab Chip
                Royal Society of Chemistry (RSC)
                1473-0197
                1473-0189
                2012
                2012
                : 12
                : 3
                : 640-646
                Article
                10.1039/C1LC20879A
                22146948
                0843351c-fb39-4c3e-af4a-291a9d711743
                © 2012
                History

                Comments

                Comment on this article