17
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Viral emissions into the air and environment after SARS-CoV-2 human challenge: a phase 1, open label, first-in-human study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Effectively implementing strategies to curb SARS-CoV-2 transmission requires understanding who is contagious and when. Although viral load on upper respiratory swabs has commonly been used to infer contagiousness, measuring viral emissions might be more accurate to indicate the chance of onward transmission and identify likely routes. We aimed to correlate viral emissions, viral load in the upper respiratory tract, and symptoms, longitudinally, in participants who were experimentally infected with SARS-CoV-2.

          Methods

          In this phase 1, open label, first-in-human SARS-CoV-2 experimental infection study at quarantine unit at the Royal Free London NHS Foundation Trust, London, UK, healthy adults aged 18–30 years who were unvaccinated for SARS-CoV-2, not previously known to have been infected with SARS-CoV-2, and seronegative at screening were recruited. Participants were inoculated with 10 50% tissue culture infectious dose of pre-alpha wild-type SARS-CoV-2 (Asp614Gly) by intranasal drops and remained in individual negative pressure rooms for a minimum of 14 days. Nose and throat swabs were collected daily. Emissions were collected daily from the air (using a Coriolis μ air sampler and directly into facemasks) and the surrounding environment (via surface and hand swabs). All samples were collected by researchers, and tested by using PCR, plaque assay, or lateral flow antigen test. Symptom scores were collected using self-reported symptom diaries three times daily. The study is registered with ClinicalTrials.gov, NCT04865237.

          Findings

          Between March 6 and July 8, 2021, 36 participants (ten female and 26 male) were recruited and 18 (53%) of 34 participants became infected, resulting in protracted high viral loads in the nose and throat following a short incubation period, with mild-to-moderate symptoms. Two participants were excluded from the per-protocol analysis owing to seroconversion between screening and inoculation, identified post hoc. Viral RNA was detected in 63 (25%) of 252 Coriolis air samples from 16 participants, 109 (43%) of 252 mask samples from 17 participants, 67 (27%) of 252 hand swabs from 16 participants, and 371 (29%) of 1260 surface swabs from 18 participants. Viable SARS-CoV-2 was collected from breath captured in 16 masks and from 13 surfaces, including four small frequently touched surfaces and nine larger surfaces where airborne virus could deposit. Viral emissions correlated more strongly with viral load in nasal swabs than throat swabs. Two individuals emitted 86% of airborne virus, and the majority of airborne virus collected was released on 3 days. Individuals who reported the highest total symptom scores were not those who emitted most virus. Very few emissions occurred before the first reported symptom (7%) and hardly any before the first positive lateral flow antigen test (2%).

          Interpretation

          After controlled experimental inoculation, the timing, extent, and routes of viral emissions was heterogeneous. We observed that a minority of participants were high airborne virus emitters, giving support to the notion of superspreading individuals or events. Our data implicates the nose as the most important source of emissions. Frequent self-testing coupled with isolation upon awareness of first symptoms could reduce onward transmissions.

          Funding

          UK Vaccine Taskforce of the Department for Business, Energy and Industrial Strategy of Her Majesty's Government.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Temporal dynamics in viral shedding and transmissibility of COVID-19

          We report temporal patterns of viral shedding in 94 patients with laboratory-confirmed COVID-19 and modeled COVID-19 infectiousness profiles from a separate sample of 77 infector-infectee transmission pairs. We observed the highest viral load in throat swabs at the time of symptom onset, and inferred that infectiousness peaked on or before symptom onset. We estimated that 44% (95% confidence interval, 25-69%) of secondary cases were infected during the index cases' presymptomatic stage, in settings with substantial household clustering, active case finding and quarantine outside the home. Disease control measures should be adjusted to account for probable substantial presymptomatic transmission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility

            Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can spread rapidly within skilled nursing facilities. After identification of a case of Covid-19 in a skilled nursing facility, we assessed transmission and evaluated the adequacy of symptom-based screening to identify infections in residents. Methods We conducted two serial point-prevalence surveys, 1 week apart, in which assenting residents of the facility underwent nasopharyngeal and oropharyngeal testing for SARS-CoV-2, including real-time reverse-transcriptase polymerase chain reaction (rRT-PCR), viral culture, and sequencing. Symptoms that had been present during the preceding 14 days were recorded. Asymptomatic residents who tested positive were reassessed 7 days later. Residents with SARS-CoV-2 infection were categorized as symptomatic with typical symptoms (fever, cough, or shortness of breath), symptomatic with only atypical symptoms, presymptomatic, or asymptomatic. Results Twenty-three days after the first positive test result in a resident at this skilled nursing facility, 57 of 89 residents (64%) tested positive for SARS-CoV-2. Among 76 residents who participated in point-prevalence surveys, 48 (63%) tested positive. Of these 48 residents, 27 (56%) were asymptomatic at the time of testing; 24 subsequently developed symptoms (median time to onset, 4 days). Samples from these 24 presymptomatic residents had a median rRT-PCR cycle threshold value of 23.1, and viable virus was recovered from 17 residents. As of April 3, of the 57 residents with SARS-CoV-2 infection, 11 had been hospitalized (3 in the intensive care unit) and 15 had died (mortality, 26%). Of the 34 residents whose specimens were sequenced, 27 (79%) had sequences that fit into two clusters with a difference of one nucleotide. Conclusions Rapid and widespread transmission of SARS-CoV-2 was demonstrated in this skilled nursing facility. More than half of residents with positive test results were asymptomatic at the time of testing and most likely contributed to transmission. Infection-control strategies focused solely on symptomatic residents were not sufficient to prevent transmission after SARS-CoV-2 introduction into this facility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract

              Summary The mode of acquisition and causes for the variable clinical spectrum of COVID-19 remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore SARS-CoV-2 pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest ACE2 expression in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) vs distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-infected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings highlight the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.
                Bookmark

                Author and article information

                Journal
                Lancet Microbe
                Lancet Microbe
                The Lancet. Microbe
                The Author(s). Published by Elsevier Ltd.
                2666-5247
                9 June 2023
                9 June 2023
                Affiliations
                [a ]Section of Virology, Imperial College London, London, UK
                [b ]Section of Adult Infectious Disease, Imperial College London, London, UK
                [c ]Department of Infectious Disease, and MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
                [d ]Department of Infectious Diseases, University College London Hospital, London, UK
                [e ]hVIVO Services, London, UK
                [f ]Department of Respiratory Sciences, University of Leicester, Leicester, UK
                Author notes
                [* ]Correspondence to: Prof Wendy S Barclay, Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
                [†]

                Contributed equally

                Article
                S2666-5247(23)00101-5
                10.1016/S2666-5247(23)00101-5
                10256269
                37307844
                07af9dcd-5bbf-4bd9-a9af-ef597517f181
                © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Articles

                Comments

                Comment on this article