54
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: a retrospective cohort study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Background

          Patients with COVID-19 who develop severe acute respiratory distress syndrome (ARDS) can have symptoms that rapidly evolve to profound hypoxaemia and death. The efficacy of extracorporeal membrane oxygenation (ECMO) for patients with severe ARDS in the context of COVID-19 is unclear. We aimed to establish the clinical characteristics and outcomes of patients with respiratory failure and COVID-19 treated with ECMO.

          Methods

          This retrospective cohort study was done in the Paris–Sorbonne University Hospital Network, comprising five intensive care units (ICUs) and included patients who received ECMO for COVID-19 associated ARDS. Patient demographics and daily pre-ECMO and on-ECMO data and outcomes were collected. Possible outcomes over time were categorised into four different states (states 1–4): on ECMO, in the ICU and weaned off ECMO, alive and out of ICU, or death. Daily probabilities of occupation in each state and of transitions between these states until day 90 post-ECMO onset were estimated with use of a multi-state Cox model stratified for each possible transition. Follow-up was right-censored on July 10, 2020.

          Findings

          From March 8 to May 2, 2020, 492 patients with COVID-19 were treated in our ICUs. Complete day-60 follow-up was available for 83 patients (median age 49 [IQR 41–56] years and 61 [73%] men) who received ECMO. Pre-ECMO, 78 (94%) patients had been prone-positioned; their median driving pressure was 18 (IQR 16–21) cm H 2O and PaO 2/FiO 2 was 60 (54–68) mm Hg. At 60 days post-ECMO initiation, the estimated probabilities of occupation in each state were 6% (95% CI 3–14) for state 1, 18% (11–28) for state 2, 45% (35–56) for state 3, and 31% (22–42) for state 4. 35 (42%) patients had major bleeding and four (5%) had a haemorrhagic stroke. 30 patients died.

          Interpretation

          The estimated 60-day survival of ECMO-rescued patients with COVID-19 was similar to that of studies published in the past 2 years on ECMO for severe ARDS. If another COVID-19 outbreak occurs, ECMO should be considered for patients developing refractory respiratory failure despite optimised care.

          Funding

          None.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

            Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia

              Abstract Background In the recent outbreak of novel coronavirus infection in Wuhan, China, significantly abnormal coagulation parameters in severe novel coronavirus pneumonia (NCP) cases were a concern. Objectives To describe the coagulation feature of patients with NCP. Methods Conventional coagulation results and outcomes of 183 consecutive patients with confirmed NCP in Tongji hospital were retrospectively analyzed. Results The overall mortality was 11.5%, the non‐survivors revealed significantly higher D‐dimer and fibrin degradation product (FDP) levels, longer prothrombin time and activated partial thromboplastin time compared to survivors on admission (P < .05); 71.4% of non‐survivors and 0.6% survivors met the criteria of disseminated intravascular coagulation during their hospital stay. Conclusions The present study shows that abnormal coagulation results, especially markedly elevated D‐dimer and FDP are common in deaths with NCP.
                Bookmark

                Author and article information

                Contributors
                Journal
                Lancet Respir Med
                Lancet Respir Med
                The Lancet. Respiratory Medicine
                Elsevier Ltd.
                2213-2600
                2213-2619
                13 August 2020
                13 August 2020
                Affiliations
                [a ]Sorbonne University, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
                [b ]Service de médecine intensive-réanimation, Institut de Cardiologie, Assistance Publique-Hôpitaux de Paris Sorbonne Université Pitié–Salpêtrière Hospital, Paris, France
                [c ]Service de chirurgie cardiaque, Institut de Cardiologie, Assistance Publique-Hôpitaux de Paris Sorbonne Université Pitié–Salpêtrière Hospital, Paris, France
                [d ]Multidisciplinary Intensive Care Unit, Department of Anaesthesiology and Critical Care, Assistance Publique-Hôpitaux de Paris Sorbonne Université Pitié–Salpêtrière Hospital, Paris, France
                [e ]Biotherapy and Inflammation-Immunopathology-Biotherapy Department, Assistance Publique-Hôpitaux de Paris Sorbonne Université Pitié–Salpêtrière Hospital, Paris, France
                [f ]Service de Pneumologie, Médecine intensive, Réanimation, Assistance Publique-Hôpitaux de Paris Sorbonne Université Pitié–Salpêtrière Hospital, Paris, France
                [g ]GRC 29, DMU DREAM, Department of Anaesthesiology and Critical Care, Assistance Publique-Hôpitaux de Paris Sorbonne Université Pitié–Salpêtrière Hospital, Paris, France
                [h ]INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique-Hôpitaux de Paris, Sorbonne University, Hôpitaux Universitaires Pitié–Salpêtrière-Charles Foix, Département de Santé Publique, Centre de Pharmacoépidémiologie, Paris, France
                [i ]Sorbonne University, INSERM, UMR-S 959, Immunology-Immunopathology-Immunotherapy, Paris, France
                [j ]Assistance Publique-Hôpitaux de Paris Sorbonne University, Hôpital Tenon, Service de Médecine intensive Réanimation, Paris, France
                [k ]INSERM Institut Mondor de Recherche Biomédicale, Team GEIC20, Créteil, France
                [l ]Sorbonne University, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, Paris, France
                [m ]Assistance Publique-Hôpitaux de Paris Sorbonne University Saint Antoine Hospital, Service de médecine intensive-réanimation, Paris, France
                Author notes
                [* ]Correspondence to: Prof Alain Combes, Service de Médecine Intensive–Réanimation, Assistance Publique–Hôpitaux de Paris Sorbonne University, Pitié–Salpêtrière Hospital, F-75013 Paris, France alain.combes@ 123456aphp.fr
                [†]

                Investigators are listed in the appendix

                Article
                S2213-2600(20)30328-3
                10.1016/S2213-2600(20)30328-3
                7426089
                32798468
                05763950-bbe9-40f5-b349-36ab04f6e185
                © 2020 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                Comments

                Comment on this article