308
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Genetic Landscape of a Cell

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Perspective: Evolution and detection of genetic robustness.

          Robustness is the invariance of phenotypes in the face of perturbation. The robustness of phenotypes appears at various levels of biological organization, including gene expression, protein folding, metabolic flux, physiological homeostasis, development, and even organismal fitness. The mechanisms underlying robustness are diverse, ranging from thermodynamic stability at the RNA and protein level to behavior at the organismal level. Phenotypes can be robust either against heritable perturbations (e.g., mutations) or nonheritable perturbations (e.g., the weather). Here we primarily focus on the first kind of robustness--genetic robustness--and survey three growing avenues of research: (1) measuring genetic robustness in nature and in the laboratory; (2) understanding the evolution of genetic robustness: and (3) exploring the implications of genetic robustness for future evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Defining genetic interaction.

            Sometimes mutations in two genes produce a phenotype that is surprising in light of each mutation's individual effects. This phenomenon, which defines genetic interaction, can reveal functional relationships between genes and pathways. For example, double mutants with surprisingly slow growth define synergistic interactions that can identify compensatory pathways or protein complexes. Recent studies have used four mathematically distinct definitions of genetic interaction (here termed Product, Additive, Log, and Min). Whether this choice holds practical consequences has not been clear, because the definitions yield identical results under some conditions. Here, we show that the choice among alternative definitions can have profound consequences. Although 52% of known synergistic genetic interactions in Saccharomyces cerevisiae were inferred according to the Min definition, we find that both Product and Log definitions (shown here to be practically equivalent) are better than Min for identifying functional relationships. Additionally, we show that the Additive and Log definitions, each commonly used in population genetics, lead to differing conclusions related to the selective advantages of sexual reproduction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways.

              Bioactive compounds can be valuable research tools and drug leads, but it is often difficult to identify their mechanism of action or cellular target. Here we investigate the potential for integration of chemical-genetic and genetic interaction data to reveal information about the pathways and targets of inhibitory compounds. Taking advantage of the existing complete set of yeast haploid deletion mutants, we generated drug-hypersensitivity (chemical-genetic) profiles for 12 compounds. In addition to a set of compound-specific interactions, the chemical-genetic profiles identified a large group of genes required for multidrug resistance. In particular, yeast mutants lacking a functional vacuolar H(+)-ATPase show multidrug sensitivity, a phenomenon that may be conserved in mammalian cells. By filtering chemical-genetic profiles for the multidrug-resistant genes and then clustering the compound-specific profiles with a compendium of large-scale genetic interaction profiles, we were able to identify target pathways or proteins. This method thus provides a powerful means for inferring mechanism of action.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                January 21 2010
                January 22 2010
                January 21 2010
                January 22 2010
                : 327
                : 5964
                : 425-431
                Article
                10.1126/science.1180823
                5600254
                20093466
                05331766-3c04-4c2b-8ec0-bfc4fe0875d7
                © 2010
                History

                Comments

                Comment on this article