12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Zitterbewegung and bulk-edge Landau-Zener tunneling in topological insulators

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigate the ballistic Zitterbewegung dynamics and the Landau-Zener tunneling between edge and bulk states of wave packets in two-dimensional topological insulators. In bulk, we use the Ehrenfest theorem to show that an external in-plane electric field not only drifts the packet longitudinally, but also induces a transverse finite side-jump for both trivial and topological regimes. For finite ribbons of width \(W\), we show that the Landau-Zener tunneling between bulk and edge states vanishes for large \(W\) as their electric field-induced coupling decays with \(W^{-3/2}\). This is demonstrated by expanding the time-dependent Schr\"odinger equation in terms of Houston states. Hence we cannot picture the quantum spin Hall states as arising from the Zitterbewegung bulk trajectories `leaking' into the edge states as proposed in Phys. Rev. B 87, 161115 (2013).

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Topological insulators and superconductors

          Topological insulators are new states of quantum matter which can not be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi\(_2\)Te\(_3\) and Bi\(_2\)Se\(_3\) crystals. We review theoretical models, materials properties and experimental results on two-dimensional and three-dimensional topological insulators, and discuss both the topological band theory and the topological field theory. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. We review the theory of topological superconductors in close analogy to the theory of topological insulators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells

            We show that the Quantum Spin Hall Effect, a state of matter with topological properties distinct from conventional insulators, can be realized in HgTe/CdTe semiconductor quantum wells. By varying the thickness of the quantum well, the electronic state changes from a normal to an "inverted" type at a critical thickness \(d_c\). We show that this transition is a topological quantum phase transition between a conventional insulating phase and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss the methods for experimental detection of the QSH effect.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Atomi orientati in campo magnetico variabile

                Bookmark

                Author and article information

                Journal
                19 July 2018
                Article
                1807.07390
                0395c9fc-82e6-4281-a1c5-54a414d2406e

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                7 pages, 5 figures
                cond-mat.mes-hall

                Nanophysics
                Nanophysics

                Comments

                Comment on this article