4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Technical note: colab_zirc_dims: a Google Colab-compatible toolset for automated and semi-automated measurement of mineral grains in laser ablation–inductively coupled plasma–mass spectrometry images using deep learning models

      ,
      Geochronology
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Collecting grain measurements for large detrital zircon age datasets is a time-consuming task, but a growing number of studies suggest such data are essential to understanding the complex roles of grain size and morphology in grain transport and as indicators for grain provenance. We developed the colab_zirc_dims Python package to automate deep-learning-based segmentation and measurement of mineral grains from scaled images captured during laser ablation at facilities that use Chromium targeting software. The colab_zirc_dims package is implemented in a collection of highly interactive Jupyter notebooks that can be run either on a local computer or installation-free via Google Colab. These notebooks also provide additional functionalities for dataset preparation and for semi-automated grain segmentation and measurement using a simple graphical user interface. Our automated grain measurement algorithm approaches human measurement accuracy when applied to a manually measured n=5004 detrital zircon dataset. Errors and uncertainty related to variable grain exposure necessitate semi-automated measurement for production of publication-quality measurements, but we estimate that our semi-automated grain segmentation workflow will enable users to collect grain measurement datasets for large (n≥5000) applicable image datasets in under a day of work. We hope that the colab_zirc_dims toolset allows more researchers to augment their detrital geochronology datasets with grain measurements.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Fiji: an open-source platform for biological-image analysis.

          Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.
            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Deep Residual Learning for Image Recognition

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Matplotlib: A 2D Graphics Environment

                Bookmark

                Author and article information

                Journal
                Geochronology
                Geochronology
                Copernicus GmbH
                2628-3719
                2023
                March 10 2023
                : 5
                : 1
                : 109-126
                Article
                10.5194/gchron-5-109-2023
                0361ca09-33f0-4a70-81dd-4c1ed9dc8106
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article