4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effects of dietary fibers from rice bran and wheat bran on gut microbiota: An overview

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • The physicochemical properties of DFs are related to their digestive behaviors.

          • DFs are degraded in the intestines due to the fermentation of gut microbiota.

          • DFs and their metabolites exert beneficial effects on gut microbiota.

          • The fermentation of DFs improve gut barrier function and immune function.

          Abstract

          Whole grain is the primary food providing abundant dietary fibers (DFs) in the human diet. DFs from rice bran and wheat bran have been well documented in modulating gut microbiota. This review aims to summarize the physicochemical properties and digestive behaviors of DFs from rice bran and wheat bran and their effects on host gut microbiota. The physicochemical properties of DFs are closely related to their fermentability and digestive behaviors. DFs from rice bran and wheat bran modulate specific bacteria and promote SAFCs-producing bacteria to maintain host health. Moreover, their metabolites stimulate the production of mucus-associated bacteria to enhance the intestinal barrier and regulate the immune system. They also reduce the level of related inflammatory cytokines and regulate Tregs activation. Therefore, DFs from rice bran and wheat bran will serve as prebiotics, and diets rich in whole grain will be a biotherapeutic strategy for human health.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites.

          A compelling set of links between the composition of the gut microbiota, the host diet, and host physiology has emerged. Do these links reflect cause-and-effect relationships, and what might be their mechanistic basis? A growing body of work implicates microbially produced metabolites as crucial executors of diet-based microbial influence on the host. Here, we will review data supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs). SCFAs can directly activate G-coupled-receptors, inhibit histone deacetylases, and serve as energy substrates. They thus affect various physiological processes and may contribute to health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells.

            Gut commensal microbes shape the mucosal immune system by regulating the differentiation and expansion of several types of T cell. Clostridia, a dominant class of commensal microbe, can induce colonic regulatory T (Treg) cells, which have a central role in the suppression of inflammatory and allergic responses. However, the molecular mechanisms by which commensal microbes induce colonic Treg cells have been unclear. Here we show that a large bowel microbial fermentation product, butyrate, induces the differentiation of colonic Treg cells in mice. A comparative NMR-based metabolome analysis suggests that the luminal concentrations of short-chain fatty acids positively correlates with the number of Treg cells in the colon. Among short-chain fatty acids, butyrate induced the differentiation of Treg cells in vitro and in vivo, and ameliorated the development of colitis induced by adoptive transfer of CD4(+) CD45RB(hi) T cells in Rag1(-/-) mice. Treatment of naive T cells under the Treg-cell-polarizing conditions with butyrate enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus, suggesting a possible mechanism for how microbial-derived butyrate regulates the differentiation of Treg cells. Our findings provide new insight into the mechanisms by which host-microbe interactions establish immunological homeostasis in the gut.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut microbiota, metabolites and host immunity.

              The microbiota - the collection of microorganisms that live within and on all mammals - provides crucial signals for the development and function of the immune system. Increased availability of technologies that profile microbial communities is facilitating the entry of many immunologists into the evolving field of host-microbiota studies. The microbial communities, their metabolites and components are not only necessary for immune homeostasis, they also influence the susceptibility of the host to many immune-mediated diseases and disorders. In this Review, we discuss technological and computational approaches for investigating the microbiome, as well as recent advances in our understanding of host immunity and microbial mutualism with a focus on specific microbial metabolites, bacterial components and the immune system.
                Bookmark

                Author and article information

                Contributors
                Journal
                Food Chem X
                Food Chem X
                Food Chemistry: X
                Elsevier
                2590-1575
                14 February 2022
                30 March 2022
                14 February 2022
                : 13
                : 100252
                Affiliations
                [a ]School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
                [b ]Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
                Author notes
                [* ]Corresponding authors at: School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. laihaoli@ 123456163.com 68365909@ 123456qq.com
                [1]

                These two authors contributed equally to this article.

                Article
                S2590-1575(22)00050-5 100252
                10.1016/j.fochx.2022.100252
                9040006
                35498986
                0226b692-2579-40f5-bfd0-1afddc265636
                © 2022 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 10 November 2021
                : 8 February 2022
                : 9 February 2022
                Categories
                Article(s) from the Special Issue on Advances on dietary polysaccharides and oligosaccharides: structure and bioactivity by Dr. Hussain and Dr. You

                dietary fibers,rice bran,wheat bran,digestive behaviors,gut microbiota,metabolites,scfas

                Comments

                Comment on this article