9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Seed priming in field crops: potential benefits, adoption and challenges

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Seed priming is a presowing technique in which seeds are moderately hydrated to the point where pregermination metabolic processes begin without actual germination. Seeds are then redried to near their actual weight for normal handling. Seeds can be soaked in tap water (hydropriming), aerated low-water potential solutions of polyethylene glycol or salt solutions (KNO3, KH2PO4, KCl, NaCl, CaCl2 or MgSO4; osmopriming), plant growth regulators, polyamines (hormonal priming), plant growth-promoting bacteria (biopriming), macro or micronutrients (nutripriming) or some plant-based natural extracts. Here, we review: (1) seed priming as a simple and effective approach for improving stand establishment, economic yields and tolerance to biotic and abiotic stresses in various crops by inducing a series of biochemical, physiological, molecular and subcellular changes in plants; (2) the tendency for seed priming to reduce the longevity of high-vigour seeds and improve the longevity of low-vigour seeds; (3) the advantages of physical methods of seed priming to enhance plant production over conventional methods based on the application of different chemical substances; (4) the various physical methods (e.g. magneto-priming and ionising radiation, including gamma rays, ultraviolet (UV) rays (UVA, UVC) and X-rays) available that are the most promising presowing seed treatments to improve crop productivity under stressful conditions; and (5) effective seed priming techniques for micronutrient delivery at planting in field crops. Seed priming as a cost-effective approach is being used for different crops and in different countries to improve yield, as a complementary strategy to grain biofortification and in genetically improved crop varieties to enhance their performance under stress conditions, including submergence and low phosphorus. Some of the challenges to the broad commercial adaption of seed priming include longevity of seeds after conventional types of priming under ambient storage conditions and a lack of studies on hermetic packaging materials for extended storage.

          Related collections

          Most cited references244

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of salinity tolerance.

          The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level. Plant growth responds to salinity in two phases: a rapid, osmotic phase that inhibits growth of young leaves, and a slower, ionic phase that accelerates senescence of mature leaves. Plant adaptations to salinity are of three distinct types: osmotic stress tolerance, Na(+) or Cl() exclusion, and the tolerance of tissue to accumulated Na(+) or Cl(). Our understanding of the role of the HKT gene family in Na(+) exclusion from leaves is increasing, as is the understanding of the molecular bases for many other transport processes at the cellular level. However, we have a limited molecular understanding of the overall control of Na(+) accumulation and of osmotic stress tolerance at the whole-plant level. Molecular genetics and functional genomics provide a new opportunity to synthesize molecular and physiological knowledge to improve the salinity tolerance of plants relevant to food production and environmental sustainability.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Plant drought stress: effects, mechanisms and management

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Crop and Pasture Science
                Crop Pasture Sci.
                CSIRO Publishing
                1836-0947
                2019
                2019
                : 70
                : 9
                : 731
                Article
                10.1071/CP18604
                0221907a-37c5-4729-be30-8a4c17f231e0
                © 2019
                History

                Comments

                Comment on this article