93
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized Mice

      research-article
      1 , 2 , 2 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 1 , 1 , 1 , 1 , 3 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 2 , , 1 ,
      Nature Communications
      Nature Publishing Group UK
      CRISPR-Cas9 genome editing, Antivirals, HIV infections

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Elimination of HIV-1 requires clearance and removal of integrated proviral DNA from infected cells and tissues. Here, sequential long-acting slow-effective release antiviral therapy (LASER ART) and CRISPR-Cas9 demonstrate viral clearance in latent infectious reservoirs in HIV-1 infected humanized mice. HIV-1 subgenomic DNA fragments, spanning the long terminal repeats and the Gag gene, are excised in vivo, resulting in elimination of integrated proviral DNA; virus is not detected in blood, lymphoid tissue, bone marrow and brain by nested and digital-droplet PCR as well as RNAscope tests. No CRISPR-Cas9 mediated off-target effects are detected. Adoptive transfer of human immunocytes from dual treated, virus-free animals to uninfected humanized mice fails to produce infectious progeny virus. In contrast, HIV-1 is readily detected following sole LASER ART or CRISPR-Cas9 treatment. These data provide proof-of-concept that permanent viral elimination is possible.

          Abstract

          Here, the authors show that sequential treatment with long-acting slow-effective release ART and AAV9- based delivery of CRISPR-Cas9 results in undetectable levels of virus and integrated DNA in a subset of humanized HIV-1 infected mice. This proof-of-concept study suggests that HIV-1 elimination is possible.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation

            A cure for HIV-1 remains unattainable as only one case has been reported, a decade ago1,2. The individual-who is known as the 'Berlin patient'-underwent two allogeneic haematopoietic stem-cell transplantation (HSCT) procedures using a donor with a homozygous mutation in the HIV coreceptor CCR5 (CCR5Δ32/Δ32) to treat his acute myeloid leukaemia. Total body irradiation was given with each HSCT. Notably, it is unclear which treatment or patient parameters contributed to this case of long-term HIV remission. Here we show that HIV-1 remission may be possible with a less aggressive and toxic approach. An adult infected with HIV-1 underwent allogeneic HSCT for Hodgkin's lymphoma using cells from a CCR5Δ32/Δ32 donor. He experienced mild gut graft-versus-host disease. Antiretroviral therapy was interrupted 16 months after transplantation. HIV-1 remission has been maintained over a further 18 months. Plasma HIV-1 RNA has been undetectable at less than one copy per millilitre along with undetectable HIV-1 DNA in peripheral CD4 T lymphocytes. Quantitative viral outgrowth assays from peripheral CD4 T lymphocytes show no reactivatable virus using a total of 24 million resting CD4 T cells. CCR5-tropic, but not CXCR4-tropic, viruses were identified in HIV-1 DNA from CD4 T cells of the patient before the transplant. CD4 T cells isolated from peripheral blood after transplantation did not express CCR5 and were susceptible only to CXCR4-tropic virus ex vivo. HIV-1 Gag-specific CD4 and CD8 T cell responses were lost after transplantation, whereas cytomegalovirus-specific responses were detectable. Similarly, HIV-1-specific antibodies and avidities fell to levels comparable to those in the Berlin patient following transplantation. Although at 18 months after the interruption of treatment it is premature to conclude that this patient has been cured, these data suggest that a single allogeneic HSCT with homozygous CCR5Δ32 donor cells may be sufficient to achieve HIV-1 remission with reduced intensity conditioning and no irradiation, and the findings provide further support for the development of HIV-1 remission strategies based on preventing CCR5 expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding.

              The study of early events in the human immunodeficiency virus type 1 (HIV-1) life cycle can be limited by the relatively low numbers of cells that can be infected synchronously in vitro. Although the efficiency of HIV-1 infection can be substantially improved by centrifugal inoculation (spinoculation or shell vial methods), the underlying mechanism of enhancement has not been defined. To understand spinoculation in greater detail, we have used real-time PCR to quantitate viral particles in suspension, virions that associate with cells, and the ability of those virions to give rise to reverse transcripts. We report that centrifugation of HIV-1(IIIB) virions at 1,200 x g for 2 h at 25 degrees C increases the number of particles that bind to CEM-SS T-cell targets by approximately 40-fold relative to inoculation by simple virus-cell mixing. Following subsequent incubation at 37 degrees C for 5 h to allow membrane fusion and uncoating to occur, the number of reverse transcripts per target cell was similarly enhanced. Indeed, by culturing spinoculated samples for 24 h, approximately 100% of the target cells were reproducibly shown to be productively infected, as judged by the expression of p24(gag). Because the modest g forces employed in this procedure were found to be capable of sedimenting viral particles and because CD4-specific antibodies were effective at blocking virus binding, we propose that spinoculation works by depositing virions on the surfaces of target cells and that diffusion is the major rate-limiting step for viral adsorption under routine in vitro pulsing conditions. Thus, techniques that accelerate the binding of viruses to target cells not only promise to facilitate the experimental investigation of postentry steps of HIV-1 infection but should also help to enhance the efficacy of virus-based genetic therapies.
                Bookmark

                Author and article information

                Contributors
                kamel.khalili@temple.edu
                hegendel@unmc.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                2 July 2019
                2 July 2019
                2019
                : 10
                : 2753
                Affiliations
                [1 ]ISNI 0000 0001 0666 4105, GRID grid.266813.8, Department of Pharmacology and Experimental Neuroscience, , University of Nebraska Medical Center, ; Omaha, NE 68198-5880 USA
                [2 ]ISNI 0000 0001 2248 3398, GRID grid.264727.2, Department of Neuroscience, , Lewis Katz School of Medicine at Temple University, ; Philadelphia, PA 19115 USA
                [3 ]ISNI 0000 0001 0666 4105, GRID grid.266813.8, Department of Pharmaceutical Sciences, , College of Pharmacy, University of Nebraska Medical Center, ; Omaha, NE 68198-5880 USA
                Article
                10366
                10.1038/s41467-019-10366-y
                6606613
                31266936
                020b24bc-826e-44ae-95eb-81e4623e1cb9
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 15 November 2018
                : 22 April 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000025, U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH);
                Award ID: P30MH092177
                Award ID: R01MH110360
                Award ID: P30MH062261
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100000026, U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse (NIDA);
                Award ID: P01DA037830
                Award ID: R01DA042706
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100000065, U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS);
                Award ID: R01NS036126
                Award ID: R01NS034239
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                crispr-cas9 genome editing,antivirals,hiv infections
                Uncategorized
                crispr-cas9 genome editing, antivirals, hiv infections

                Comments

                Comment on this article