25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Forecast cooling of the Atlantic subpolar gyre and associated impacts

      letter

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Decadal variability in the North Atlantic and its subpolar gyre (SPG) has been shown to be predictable in climate models initialized with the concurrent ocean state. Numerous impacts over ocean and land have also been identified. Here we use three versions of the Met Office Decadal Prediction System to provide a multimodel ensemble forecast of the SPG and related impacts. The recent cooling trend in the SPG is predicted to continue in the next 5 years due to a decrease in the SPG heat convergence related to a slowdown of the Atlantic Meridional Overturning Circulation. We present evidence that the ensemble forecast is able to skilfully predict these quantities over recent decades. We also investigate the ability of the forecast to predict impacts on surface temperature, pressure, precipitation, and Atlantic tropical storms and compare the forecast to recent boreal summer climate.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: not found
          • Article: not found

          A signature of persistent natural thermohaline circulation cycles in observed climate

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability.

            Systematic climate shifts have been linked to multidecadal variability in observed sea surface temperatures in the North Atlantic Ocean. These links are extensive, influencing a range of climate processes such as hurricane activity and African Sahel and Amazonian droughts. The variability is distinct from historical global-mean temperature changes and is commonly attributed to natural ocean oscillations. A number of studies have provided evidence that aerosols can influence long-term changes in sea surface temperatures, but climate models have so far failed to reproduce these interactions and the role of aerosols in decadal variability remains unclear. Here we use a state-of-the-art Earth system climate model to show that aerosol emissions and periods of volcanic activity explain 76 per cent of the simulated multidecadal variance in detrended 1860-2005 North Atlantic sea surface temperatures. After 1950, simulated variability is within observational estimates; our estimates for 1910-1940 capture twice the warming of previous generation models but do not explain the entire observed trend. Other processes, such as ocean circulation, may also have contributed to variability in the early twentieth century. Mechanistically, we find that inclusion of aerosol-cloud microphysical effects, which were included in few previous multimodel ensembles, dominates the magnitude (80 per cent) and the spatial pattern of the total surface aerosol forcing in the North Atlantic. Our findings suggest that anthropogenic aerosol emissions influenced a range of societally important historical climate events such as peaks in hurricane activity and Sahel drought. Decadal-scale model predictions of regional Atlantic climate will probably be improved by incorporating aerosol-cloud microphysical interactions and estimates of future concentrations of aerosols, emissions of which are directly addressable by policy actions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A New Globally Complete Monthly Historical Gridded Mean Sea Level Pressure Dataset (HadSLP2): 1850–2004

                Bookmark

                Author and article information

                Journal
                Geophys Res Lett
                Geophys Res Lett
                grl
                Geophysical Research Letters
                BlackWell Publishing Ltd (Oxford, UK )
                0094-8276
                1944-8007
                28 July 2014
                21 July 2014
                : 41
                : 14
                : 5167-5174
                Affiliations
                [1 ]Met Office Hadley Centre Exeter, UK
                [2 ]Willis Research Network London, UK
                Author notes
                Correspondence to: L. Hermanson,, leon.hermanson@ 123456metoffice.gov.uk

                The Editor thanks two anonymous reviewers for their assistance in evaluating this paper.

                Article
                10.1002/2014GL060420
                4373142
                0204f6be-1ab3-4650-a705-91895aaf312c
                ©2014. The Authors.

                This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 29 May 2014
                : 29 June 2014
                Categories
                Research Letters

                decadal prediction,atlantic,subpolar gyre,impacts
                decadal prediction, atlantic, subpolar gyre, impacts

                Comments

                Comment on this article