9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Membrane Rafts: Portals for Viral Entry

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Membrane rafts are dynamic, small (10–200 nm) domains enriched with cholesterol and sphingolipids that compartmentalize cellular processes. Rafts participate in roles essential to the lifecycle of different viral families including virus entry, assembly and/or budding events. Rafts seem to participate in virus attachment and recruitment to the cell surface, as well as the endocytic and non-endocytic mechanisms some viruses use to enter host cells. In this review, we will introduce the specific role of rafts in viral entry and define cellular factors implied in the choice of one entry pathway over the others. Finally, we will summarize the most relevant information about raft participation in the entry process of enveloped and non-enveloped viruses.

          Related collections

          Most cited references267

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

          Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Fluid Mosaic Model of the Structure of Cell Membranes

            A fluid mosaic model is presented for the gross organization and structure of the proteins and lipids of biological membranes. The model is consistent with the restrictions imposed by thermodynamics. In this model, the proteins that are integral to the membrane are a heterogeneous set of globular molecules, each arranged in an amphipathic structure, that is, with the ionic and highly polar groups protruding from the membrane into the aqueous phase, and the nonpolar groups largely buried in the hydrophobic interior of the membrane. These globular molecules are partially embedded in a matrix of phospholipid. The bulk of the phospholipid is organized as a discontinuous, fluid bilayer, although a small fraction of the lipid may interact specifically with the membrane proteins. The fluid mosaic structure is therefore formally analogous to a two-dimensional oriented solution of integral proteins (or lipoproteins) in the viscous phospholipid bilayer solvent. Recent experiments with a wide variety of techniqes and several different membrane systems are described, all of which abet consistent with, and add much detail to, the fluid mosaic model. It therefore seems appropriate to suggest possible mechanisms for various membrane functions and membrane-mediated phenomena in the light of the model. As examples, experimentally testable mechanisms are suggested for cell surface changes in malignant transformation, and for cooperative effects exhibited in the interactions of membranes with some specific ligands. Note added in proof: Since this article was written, we have obtained electron microscopic evidence (69) that the concanavalin A binding sites on the membranes of SV40 virus-transformed mouse fibroblasts (3T3 cells) are more clustered than the sites on the membranes of normal cells, as predicted by the hypothesis represented in Fig. 7B. T-here has also appeared a study by Taylor et al. (70) showing the remarkable effects produced on lymphocytes by the addition of antibodies directed to their surface immunoglobulin molecules. The antibodies induce a redistribution and pinocytosis of these surface immunoglobulins, so that within about 30 minutes at 37 degrees C the surface immunoglobulins are completely swept out of the membrane. These effects do not occur, however, if the bivalent antibodies are replaced by their univalent Fab fragments or if the antibody experiments are carried out at 0 degrees C instead of 37 degrees C. These and related results strongly indicate that the bivalent antibodies produce an aggregation of the surface immunoglobulin molecules in the plane of the membrane, which can occur only if the immunoglobulin molecules are free to diffuse in the membrane. This aggregation then appears to trigger off the pinocytosis of the membrane components by some unknown mechanism. Such membrane transformations may be of crucial importance in the induction of an antibody response to an antigen, as well as iv other processes of cell differentiation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Mechanisms of clathrin-mediated endocytosis

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                04 February 2021
                2021
                : 12
                : 631274
                Affiliations
                [1] 1Departamento de Biología Molecular, Universidad Autónoma de Madrid , Madrid, Spain
                [2] 2Centro de Biología Molecular Severo Ochoa , CSIC-UAM, Madrid, Spain
                Author notes

                Edited by: Julie Lucifora, Institut National de la Santé et de la Recherche Médicale (INSERM), France

                Reviewed by: Eloi R. Verrier, INSERM UMR_S1110 Institute de Recherche sur les Maladies Virales et Hepatiques, France; Dimitri L. Lavillette, Institut Pasteur of Shanghai (CAS), China

                *Correspondence: Inés Ripa, ines.ripa@ 123456cbm.csic.es

                This article was submitted to Virology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2021.631274
                7890030
                33613502
                01474585-d04e-41a9-9879-4cc9f274f2ac
                Copyright © 2021 Ripa, Andreu, López-Guerrero and Bello-Morales.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 November 2020
                : 14 January 2021
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 268, Pages: 18, Words: 0
                Funding
                Funded by: Ministerio de Ciencia, Innovación y Universidades 10.13039/100014440
                Categories
                Microbiology
                Review

                Microbiology & Virology
                cholesterol,viral entry,endocytosis,caveolae,raft
                Microbiology & Virology
                cholesterol, viral entry, endocytosis, caveolae, raft

                Comments

                Comment on this article