Laryngeal echolocation in bats could have evolved following two scenarios: a single origin from a common ancestor or an independent acquisition inside the two clades Yinpterochiroptera and Yangochiroptera. Later, some members of Yinpterochiroptera possibly lost their ability to echolocate. In bats, the larynx produces vocalizations for communication and, in most species, for echolocation. Here, we describe how comparative chiropteran laryngeal morphology is a novel area of research that could improve the understanding of echolocation and may help resolve the evolutionary history of bats. This review provides morphological descriptions and comparisons of the bat larynx and bioacoustics interpretations. We discuss the importance of understanding: (1) laryngeal sound production so it may be linked with the evolution of the chiropteran auditory system; and (2) the evolution of laryngeal morphology to understand the ecological and behavioural aspects of bat biology. We find that a strong phylogenetic signal is potentially the main source explaining macroevolutionary variation in laryngeal form among bats. We predict that the three parameters of sound production in echolocation (frequency, intensity, and rate of calls) are independently modulated by different laryngeal components, but this hypothesis remains understudied in terms of species diversity.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.