27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Vicariant origin of malagasy reptiles supports late cretaceous antarctic land bridge.

      The American naturalist
      Animals, Antarctic Regions, Base Sequence, Bayes Theorem, Cell Nucleus, genetics, Computational Biology, Demography, Evolution, Molecular, Geography, Madagascar, Molecular Sequence Data, Phylogeny, Population Dynamics, Reptiles, physiology, Sequence Analysis, DNA

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since the acceptance of Wegener's theory of plate tectonics in the 1960s, continental drift vicariance has been proposed as an explanation for pan-Gondwanan faunal distributions. Given the recognition of historical connections among continents, it no longer was necessary to invoke hypotheses of dispersal across nearly insurmountable barriers. The application of continental drift vicariance theory to Gondwanan floral and faunal distributions provided reasonable explanations for such unusual distributions as that of the southern beech (Nothofagus) and chameleons. However, recent studies have demonstrated a significant, if not dominant, role for dispersal in the present-day distributions of these and numerous other "Gondwanan" taxa. The evolutionary histories of three Malagasy groups (boid snakes, podocnemid turtles, and iguanid lizards) commonly have been interpreted as reflecting vicariance because of continental drift associated with the breakup of Gondwana. Bayesian analyses of divergence ages suggest that this pattern is the result of vicariance coincident with the isolation of Madagascar in the Late Cretaceous (approximately 80 million years ago). This represents the first temporal evidence linking the vicariant origin of extant Malagasy vertebrates to a single geologic event. Specifically, our data provide strong, independently corroborated evidence for a contiguous Late Cretaceous Gondwana, exclusive of Africa and connected via Antarctica.

          Related collections

          Author and article information

          Comments

          Comment on this article