27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evidence for European presence in the Americas in ad 1021

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transatlantic exploration took place centuries before the crossing of Columbus. Physical evidence for early European presence in the Americas can be found in Newfoundland, Canada 1,2. However, it has thus far not been possible to determine when this activity took place 3–5. Here we provide evidence that the Vikings were present in Newfoundland in ad 1021. We overcome the imprecision of previous age estimates by making use of the cosmic-ray-induced upsurge in atmospheric radiocarbon concentrations in ad 993 (ref. 6). Our new date lays down a marker for European cognisance of the Americas, and represents the first known point at which humans encircled the globe. It also provides a definitive tie point for future research into the initial consequences of transatlantic activity, such as the transference of knowledge, and the potential exchange of genetic information, biota and pathologies 7,8.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          THE INTCAL20 NORTHERN HEMISPHERE RADIOCARBON AGE CALIBRATION CURVE (0–55 CAL kBP)

          Radiocarbon ( 14 C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14 C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14 C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14 C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14 C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14 C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Bayesian Analysis of Radiocarbon Dates

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Discussion Reporting of 14C Data

              Count rates, representing the rate of 14C decay, are the basic data obtained in a 14C laboratory. The conversion of this information into an age or geochemical parameters appears a simple matter at first. However, the path between counting and suitable 14C data reporting (table 1) causes headaches to many. Minor deflections in pathway, depending on personal interpretations, are possible and give end results that are not always useful for inter-laboratory comparisons. This discussion is an attempt to identify some of these problems and to recommend certain procedures by which reporting ambiguities can be avoided.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                October 20 2021
                Article
                10.1038/s41586-021-03972-8
                6c8efc9e-fda9-481a-9c91-b2d2b06bf791
                © 2021

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article