68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs.

        1 ,
      PloS one
      Public Library of Science (PLoS)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The necks of sauropod dinosaurs were a key factor in their evolution. The habitual posture and range of motion of these necks has been controversial, and computer-aided studies have argued for an obligatory sub-horizontal pose. However, such studies are compromised by their failure to take into account the important role of intervertebral cartilage. This cartilage takes very different forms in different animals. Mammals and crocodilians have intervertebral discs, while birds have synovial joints in their necks. The form and thickness of cartilage varies significantly even among closely related taxa. We cannot yet tell whether the neck joints of sauropods more closely resembled those of birds or mammals. Inspection of CT scans showed cartilage:bone ratios of 4.5% for Sauroposeidon and about 20% and 15% for two juvenile Apatosaurus individuals. In extant animals, this ratio varied from 2.59% for the rhea to 24% for a juvenile giraffe. It is not yet possible to disentangle ontogenetic and taxonomic signals, but mammal cartilage is generally three times as thick as that of birds. Our most detailed work, on a turkey, yielded a cartilage:bone ratio of 4.56%. Articular cartilage also added 11% to the length of the turkey's zygapophyseal facets. Simple image manipulation suggests that incorporating 4.56% of neck cartilage into an intervertebral joint of a turkey raises neutral posture by 15°. If this were also true of sauropods, the true neutral pose of the neck would be much higher than has been depicted. An additional 11% of zygapophyseal facet length translates to 11% more range of motion at each joint. More precise quantitative results must await detailed modelling. In summary, including cartilage in our models of sauropod necks shows that they were longer, more elevated and more flexible than previously recognised.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Biology of the sauropod dinosaurs: the evolution of gigantism

          The herbivorous sauropod dinosaurs of the Jurassic and Cretaceous periods were the largest terrestrial animals ever, surpassing the largest herbivorous mammals by an order of magnitude in body mass. Several evolutionary lineages among Sauropoda produced giants with body masses in excess of 50 metric tonnes by conservative estimates. With body mass increase driven by the selective advantages of large body size, animal lineages will increase in body size until they reach the limit determined by the interplay of bauplan, biology, and resource availability. There is no evidence, however, that resource availability and global physicochemical parameters were different enough in the Mesozoic to have led to sauropod gigantism. We review the biology of sauropod dinosaurs in detail and posit that sauropod gigantism was made possible by a specific combination of plesiomorphic characters (phylogenetic heritage) and evolutionary innovations at different levels which triggered a remarkable evolutionary cascade. Of these key innovations, the most important probably was the very long neck, the most conspicuous feature of the sauropod bauplan. Compared to other herbivores, the long neck allowed more efficient food uptake than in other large herbivores by covering a much larger feeding envelope and making food accessible that was out of the reach of other herbivores. Sauropods thus must have been able to take up more energy from their environment than other herbivores. The long neck, in turn, could only evolve because of the small head and the extensive pneumatization of the sauropod axial skeleton, lightening the neck. The small head was possible because food was ingested without mastication. Both mastication and a gastric mill would have limited food uptake rate. Scaling relationships between gastrointestinal tract size and basal metabolic rate (BMR) suggest that sauropods compensated for the lack of particle reduction with long retention times, even at high uptake rates. The extensive pneumatization of the axial skeleton resulted from the evolution of an avian-style respiratory system, presumably at the base of Saurischia. An avian-style respiratory system would also have lowered the cost of breathing, reduced specific gravity, and may have been important in removing excess body heat. Another crucial innovation inherited from basal dinosaurs was a high BMR. This is required for fueling the high growth rate necessary for a multi-tonne animal to survive to reproductive maturity. The retention of the plesiomorphic oviparous mode of reproduction appears to have been critical as well, allowing much faster population recovery than in megaherbivore mammals. Sauropods produced numerous but small offspring each season while land mammals show a negative correlation of reproductive output to body size. This permitted lower population densities in sauropods than in megaherbivore mammals but larger individuals. Our work on sauropod dinosaurs thus informs us about evolutionary limits to body size in other groups of herbivorous terrestrial tetrapods. Ectothermic reptiles are strongly limited by their low BMR, remaining small. Mammals are limited by their extensive mastication and their vivipary, while ornithsichian dinosaurs were only limited by their extensive mastication, having greater average body sizes than mammals.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The evolution of vertebral pneumaticity in sauropod dinosaurs

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cartilaginous Epiphyses in Extant Archosaurs and Their Implications for Reconstructing Limb Function in Dinosaurs

              Extinct archosaurs, including many non-avian dinosaurs, exhibit relatively simply shaped condylar regions in their appendicular bones, suggesting potentially large amounts of unpreserved epiphyseal (articular) cartilage. This “lost anatomy” is often underappreciated such that the ends of bones are typically considered to be the joint surfaces, potentially having a major impact on functional interpretation. Extant alligators and birds were used to establish an objective basis for inferences about cartilaginous articular structures in such extinct archosaur clades as non-avian dinosaurs. Limb elements of alligators, ostriches, and other birds were dissected, disarticulated, and defleshed. Lengths and condylar shapes of elements with intact epiphyses were measured. Limbs were subsequently completely skeletonized and the measurements repeated. Removal of cartilaginous condylar regions resulted in statistically significant changes in element length and condylar breadth. Moreover, there was marked loss of those cartilaginous structures responsible for joint architecture and congruence. Compared to alligators, birds showed less dramatic, but still significant changes. Condylar morphologies of dinosaur limb bones suggest that most non-coelurosaurian clades possessed large cartilaginous epiphyses that relied on the maintenance of vascular channels that are otherwise eliminated early in ontogeny in smaller-bodied tetrapods. A sensitivity analysis using cartilage correction factors (CCFs) obtained from extant taxa indicates that whereas the presence of cartilaginous epiphyses only moderately increases estimates of dinosaur height and speed, it has important implications for our ability to infer joint morphology, posture, and the complicated functional movements in the limbs of many extinct archosaurs. Evidence suggests that the sizes of sauropod epiphyseal cartilages surpassed those of alligators, which account for at least 10% of hindlimb length. These data suggest that large cartilaginous epiphyses were widely distributed among non-avian archosaurs and must be considered when making inferences about locomotor functional morphology in fossil taxa.
                Bookmark

                Author and article information

                Journal
                PLoS ONE
                PloS one
                Public Library of Science (PLoS)
                1932-6203
                1932-6203
                2013
                : 8
                : 10
                Affiliations
                [1 ] Department of Earth Sciences, University of Bristol, Bristol, United Kingdom.
                Article
                PONE-D-13-14583
                10.1371/journal.pone.0078214
                3812996
                24205163
                8b2e92e4-f2ea-4a2c-b993-f7aa53fa0257
                History

                Comments

                Comment on this article