19
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Artificial Intelligence in Gastroenterology

      Submit here before May 31, 2024

      About Digestion: 3.2 Impact Factor I 6.4 CiteScore I 0.914 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Enteric flora in health and disease.

      Digestion
      Animals, Bacteria, isolation & purification, Bacterial Infections, drug therapy, immunology, microbiology, Gastrointestinal Tract, Humans, Intestinal Diseases, Intestinal Mucosa, Probiotics, therapeutic use

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human gut is the natural habitat for a large and dynamic bacterial community. Recently developed molecular biology tools suggest that a substantial part of these bacterial populations are still to be described. However, the relevance and impact of resident bacteria on host's physiology and pathology is well documented. Major functions of the gut microflora include metabolic activities that result in salvage of energy and absorbable nutrients, protection of the colonized host against invasion by alien microbes, and important trophic effects on intestinal epithelia and on immune structure and function. Gut bacteria play an essential role in the development and homeostasis of the immune system. It is important to underscore that the specialised lymphoid follicles of the gut mucosa are the major sites for induction and regulation of the immune system. On the other hand, there is evidence implicating the gut flora in certain pathological conditions, including multisystem organ failure, colon cancer and inflammatory bowel diseases. Copyright 2006 S. Karger AG, Basel.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          How host-microbial interactions shape the nutrient environment of the mammalian intestine.

          Humans and other mammals are colonized by a vast, complex, and dynamic consortium of microorganisms. One evolutionary driving force for maintaining this metabolically active microbial society is to salvage energy from nutrients, particularly carbohydrates, that are otherwise nondigestible by the host. Much of our understanding of the molecular mechanisms by which members of the intestinal microbiota degrade complex polysaccharides comes from studies of Bacteroides thetaiotaomicron, a prominent and genetically manipulatable component of the normal human and mouse gut. Colonization of germ-free mice with B. thetaiotaomicron has shown how this anaerobe modifies many aspects of intestinal cellular differentiation/gene expression to benefit both host and microbe. These and other studies underscore the importance of understanding precisely how nutrient metabolism serves to establish and sustain symbiotic relationships between mammals and their bacterial partners.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin.

            Oligofructose and inulin are naturally occurring indigestible carbohydrates. In vitro they selectively stimulate the growth of species of Bifidobacterium, a genus of bacteria considered beneficial to health. This study was designed to determine their effects on the large bowel microflora and colonic function in vivo. Eight subjects participated in a 45-day study during which they ate controlled diets. For the middle 15 days, 15 g.day-1 oligofructose was substituted for 15 g.day-1 sucrose. Four of these subjects went on to a further period with 15 g.day-1 inulin. Bowel habit, transit time, stool composition, breath H2 and CH4, and the predominant genera of colonic bacteria were measured. Both oligofructose and inulin significantly increased bifidobacteria from 8.8 to 9.5 log10 g stool-1 and 9.2 to 10.1 log10 g stool-1, respectively, whereas bacteroides, clostridia, and fusobacteria decreased when subjects were fed oligofructose, and gram-positive cocci decreased when subjects were fed inulin. Total bacterial counts were unchanged. Fecal wet and dry matter, nitrogen, and energy excretion increased with both substrates, as did breath H2. Little change in fecal short-chain fatty acids and breath CH4 was observed. A 15-g.day-1 dietary addition of oligofructose or inulin led to Bifidobacterium becoming the numerically predominant genus in feces. Thus, small changes in diet can alter the balance of colonic bacteria towards a potentially healthier microflora.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon.

              The colonic microflora is involved in the pathogenesis of Crohn's disease (CD) but less than 30% of the microflora can be cultured. We investigated potential differences in the faecal microflora between patients with colonic CD in remission (n=9), patients with active colonic CD (n=8), and healthy volunteers (n=16) using culture independent techniques. Quantitative dot blot hybridisation with six radiolabelled 16S ribosomal ribonucleic acid (rRNA) targeting oligonucleotide probes was used to measure the proportions of rRNA corresponding to each phylogenetic group. Temporal temperature gradient gel electrophoresis (TTGE) of 16S rDNA was used to evaluate dominant species diversity. Enterobacteria were significantly increased in active and quiescent CD. Probe additivity was significantly lower in patients (65 (11)% and 69 (6)% in active CD and quiescent CD) than in healthy controls (99 (7)%). TTGE profiles varied markedly between active and quiescent CD but were stable in healthy conditions. The biodiversity of the microflora remains high in patients with CD. Enterobacteria were observed significantly more frequently in CD than in health, and more than 30% of the dominant flora belonged to yet undefined phylogenetic groups.
                Bookmark

                Author and article information

                Comments

                Comment on this article