2,725
views
0
recommends
+1 Recommend
2 collections
    1
    shares

      UCL Press journals including UCL Open Environment have now moved website.

      You will now find the journal, all publications, reviews and submission information at https://journals.uclpress.co.uk/ucloe

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Indoor air quality and early detection of mould growth in residential buildings: a case study

      research-article
      1 , * , , 2 , 1
      UCL Open Environment
      UCL Press
      mould growth, hygrothermal, indoor environment, health, sustainability, indoor air quality

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mould growth affects one in three homes, and it is the biggest cause for complaints and litigations filed to the relevant authorities in Australia, while also significantly affecting the physical and psychological health of the building’s occupants. Indoor mould is caused by excessive dampness, resulting from poor architectural specification, construction and maintenance practices, as well as inappropriate behaviour of the occupants. The consequences range from early biodeterioration of building materials, requiring anticipated renovation works, to deterioration of the indoor environment, posing a serious threat to the building’s occupants. This study investigates indoor air quality (IAQ) and mould growth, providing a snapshot of the current IAQ of Australian residential buildings regarding air pollutants. It uses a case study representative of the typical Australian suburban home to investigate the effects of unnoticed mould growth. The results of the monitoring campaign indicate that buildings with a high concentration of fungal spores are also more likely to present poor IAQ levels, high concentrations of particulate matters (PM 10 and PM 2.5) and carbon dioxide (CO 2). This research suggests the need for the development of early detection strategies that could minimise the health hazard to people, thereby preventing the need for any major renovations.

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants.

          Because human activities impact the timing, location, and degree of pollutant exposure, they play a key role in explaining exposure variation. This fact has motivated the collection of activity pattern data for their specific use in exposure assessments. The largest of these recent efforts is the National Human Activity Pattern Survey (NHAPS), a 2-year probability-based telephone survey (n=9386) of exposure-related human activities in the United States (U.S.) sponsored by the U.S. Environmental Protection Agency (EPA). The primary purpose of NHAPS was to provide comprehensive and current exposure information over broad geographical and temporal scales, particularly for use in probabilistic population exposure models. NHAPS was conducted on a virtually daily basis from late September 1992 through September 1994 by the University of Maryland's Survey Research Center using a computer-assisted telephone interview instrument (CATI) to collect 24-h retrospective diaries and answers to a number of personal and exposure-related questions from each respondent. The resulting diary records contain beginning and ending times for each distinct combination of location and activity occurring on the diary day (i.e., each microenvironment). Between 340 and 1713 respondents of all ages were interviewed in each of the 10 EPA regions across the 48 contiguous states. Interviews were completed in 63% of the households contacted. NHAPS respondents reported spending an average of 87% of their time in enclosed buildings and about 6% of their time in enclosed vehicles. These proportions are fairly constant across the various regions of the U.S. and Canada and for the California population between the late 1980s, when the California Air Resources Board (CARB) sponsored a state-wide activity pattern study, and the mid-1990s, when NHAPS was conducted. However, the number of people exposed to environmental tobacco smoke (ETS) in California seems to have decreased over the same time period, where exposure is determined by the reported time spent with a smoker. In both California and the entire nation, the most time spent exposed to ETS was reported to take place in residential locations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Meta-analyses of the associations of respiratory health effects with dampness and mold in homes.

            The Institute of Medicine (IOM) of the National Academy of Sciences recently completed a critical review of the scientific literature pertaining to the association of indoor dampness and mold contamination with adverse health effects. In this paper, we report the results of quantitative meta-analyses of the studies reviewed in the IOM report plus other related studies. We developed point estimates and confidence intervals (CIs) of odds ratios (ORs) that summarize the association of several respiratory and asthma-related health outcomes with the presence of dampness and mold in homes. The ORs and CIs from the original studies were transformed to the log scale and random effect models were applied to the log ORs and their variance. Models accounted for the correlation between multiple results within the studies analyzed. Central estimates of ORs for the health outcomes ranged from 1.34 to 1.75. CIs (95%) excluded unity in nine of 10 instances, and in most cases the lower bound of the CI exceeded 1.2. Based on the results of the meta-analyses, building dampness and mold are associated with approximately 30-50% increases in a variety of respiratory and asthma-related health outcomes. The results of these meta-analyses reinforce the IOM's recommendation that actions be taken to prevent and reduce building dampness problems, and also allow estimation of the magnitude of adverse public health impacts associated with failure to do so.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Living in a cold and damp home: frameworks for understanding impacts on mental well-being.

              To carry out a review of recent studies that have explored relationships between mental well-being and how this may be affected by living in cold and damp homes. Attention is focused on intervention studies in which heating and insulation improvements were carried out and impacts on well-being assessed.
                Bookmark

                Author and article information

                Journal
                UCL Open Environ
                UCLOE
                UCL Open Environment
                UCL Open Environ
                UCL Press (UK )
                2632-0886
                15 November 2022
                2022
                : 4
                : e049
                Affiliations
                [1 ]School of Architecture, Design and Planning, The University of Sydney, Sydney, Australia
                [2 ]Faculty of Architecture, Building and Planning, The University of Melbourne, Melbourne, Australia
                Author notes
                *Corresponding author: E-mail: arianna.brambilla@ 123456sydney.edu.au
                Author information
                https://orcid.org/0000-0002-8494-7861
                Article
                10.14324/111.444/ucloe.000049
                e1d111d8-97c0-400f-a923-3dd10813318e
                © 2022 The Authors.

                This is an open access article distributed under the terms of the Creative Commons Attribution Licence (CC BY) 4.0, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 March 2022
                : 09 September 2022
                Page count
                Figures: 4, Tables: 4, References: 29, Pages: 9
                Categories
                Research Article

                indoor air quality,mould growth,hygrothermal,indoor environment,health,sustainability

                Comments

                Comment on this article