31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories

      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          A self-organized vortex array of hydrodynamically entrained sperm cells.

          Many patterns in biological systems depend on the exchange of chemical signals between cells. We report a spatiotemporal pattern mediated by hydrodynamic interactions. At planar surfaces, spermatozoa self-organized into dynamic vortices resembling quantized rotating waves. These vortices formed an array with local hexagonal order. Introducing an order parameter that quantifies cooperativity, we found that the array appeared only above a critical sperm density. Using a model, we estimated the hydrodynamic interaction force between spermatozoa to be approximately 0.03 piconewtons. Thus, large-scale coordination of cells can be regulated hydrodynamically, and chemical signals are not required.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Digital in-line holography for biological applications.

            Digital in-line holography with numerical reconstruction has been developed into a new tool, specifically for biological applications, that routinely achieves both lateral and depth resolution, at least at the micron level, in three-dimensional imaging. The experimental and numerical procedures have been incorporated into a program package with a very fast reconstruction algorithm that is now capable of real-time reconstruction. This capability is demonstrated for diverse objects, such as suspension of microspheres and biological samples (diatom, the head of Drosophila melanogaster), and the advantages are discussed by comparing holographic reconstructions with images taken by using conventional compound light microscopy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydrodynamics of sperm cells near surfaces.

              Sperm are propelled by an actively beating tail, and display a wide variety of swimming patterns. When confined between two parallel walls, sperm swim either in circles or on curvilinear trajectories close to the walls. We employ mesoscale hydrodynamics simulations in combination with a mechanical sperm model to study the swimming behavior near walls. The simulations show that sperm become captured at the wall due to the hydrodynamic flow fields which are generated by the flagellar beat. The circular trajectories are determined by the chiral asymmetry of the sperm shape. For strong (weak) chirality, sperm swim in tight (wide) circles, with the beating plane of the flagellum oriented perpendicular (parallel) to the wall. For comparison, we also perform simulations based on a local anisotropic friction of the flagellum. In this resistive force approximation, surface adhesion and circular swimming patterns are obtained as well. However, the adhesion mechanism is now due to steric repulsion, and the orientation of the beating plane is different. Our model provides a theoretical framework that explains several distinct swimming behaviors of sperm near and far from a wall. Moreover, the model suggests a mechanism by which sperm navigate in a chemical gradient via a change of their shape. 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                10.1073/pnas.1212506109

                Comments

                Comment on this article