+1 Recommend
    • Review: found
    Is Open Access

    Review of 'An overview of hydrophobic treatments and their application with Internal Wall Insulation'

    An overview of hydrophobic treatments and their application with Internal Wall InsulationCrossref
    Average rating:
        Rated 4 of 5.
    Level of importance:
        Rated 4 of 5.
    Level of validity:
        Rated 3 of 5.
    Level of completeness:
        Rated 4 of 5.
    Level of comprehensibility:
        Rated 5 of 5.
    Competing interests:

    Reviewed article

    • Record: found
    • Abstract: found
    • Article: found
    Is Open Access

    An overview of hydrophobic treatments and their application with Internal Wall Insulation

    Hydrophobic (or water-repellent) treatments have been proposed to mitigate moisture risks associated with Internal Wall Insulation when applied to solid masonry walls. This can reduce risks associated with moisture accumulation within the structure such as mould growth or the deterioration of joist ends and other embedded timber. Where treatments perform well there is a net reduction of moisture content and risk. However, such treatments slow down drying processes, and therefore may result in a net increase in moisture if the treatment is bypassed by e.g. cracks. Some treatments have may lead to damage to external masonry surfaces in some situations. Freeze-thaw and salt crystallisation are the two main causes Hygrothermal simulations may give some indication of risks but techniques to assess the risk of surface damage are either simplistic, impractical outside of the research environment, or both. This paper reviews the state of the art of assessing and predicting the risk of surface damage associated with surface treatments.

      Review information

      This work has been published open access under Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at www.scienceopen.com.

      Materials technology,Engineering,Architecture
      Water repellent,Internal Wall Insulation,Energy and climate,Solid Wall Insulation,Hydrophobic,Sustainability in architecture and the built environment,Hygrothermal

      Review text

      In general, the same comments apply compared to the previous version. It is an well-written paper that gives a good introduction to HPT. However, it does not add to the state of the art because no new information is provided, and level of literature review is insufficient to derive important new conclusions from that. Hence, this paper would not qualify for a high-impact scientific journal. Given that the concept of UCL open is a bit unclear to me, I leave it up to the editor to decide whether this aligns with the goals of the journal.

      The title is slightly misleading, as one might expect “an overview of hydrophobic treatments”, which is not the case. The paper does not focus on the different types of treatments that are used, so I would be inclined to rephrase the title.

      Section 3: the first sentence comprises “summarizes” twice, and as well, is a bit problematic. “briefly summarizes some key literature, grouped in a series of topics”. Given that the abstract explicitly states that this paper provides a state-of-the-art, there seems to be a mismatch between the ambition formulated there, and the “briefly”, “some”. As indicated in the first review, this paper is worth while reading and provides a good introduction in the topic, but does not qualify as a lasting contribution to the state-of-the-art.

      Section 4.1.1 This section is rather qualitative in nature, and lacks quantitative underpinning. This is mainly because rather generic concepts are introduced which should be known to the majority of the readers. May I refer to e.g. following paper: DOI: 10.1177/17442591211009937. The section on hydrophobic treatments investigates the impact of rain water leakage into the construction, and how that affects freeze-thaw risks and mould for a wall with HPT.

      Section 4.3.2, 3rd paragraph: the last sentence is incomplete “The role of the depth of penetration on wetting and drying”.

      Section 6.3: note that the 1% rule is a bit outdated, and several publications have been filed that provide an overview of more realistic infiltration rate, e.g.



      Comment on this review