328
views
0
recommends
+1 Recommend
0
shares
    • Review: found
    Is Open Access

    Review of 'Hygrothermal Monitoring of Replacement Infill Panels for Historic Timber-Frame Buildings : Initial Findings'

    EDITOR
    Bookmark
    3
    Hygrothermal Monitoring of Replacement Infill Panels for Historic Timber-Frame Buildings : Initial FindingsCrossref
    please see attached pdf
    Average rating:
        Rated 3 of 5.
    Level of importance:
        Rated 3 of 5.
    Level of validity:
        Rated 3 of 5.
    Level of completeness:
        Rated 3 of 5.
    Level of comprehensibility:
        Rated 3 of 5.
    Competing interests:
    None

    Reviewed article

    • Record: found
    • Abstract: found
    • Article: found
    Is Open Access

    Hygrothermal Monitoring of Replacement Infill Panels for Historic Timber-Frame Buildings : Initial Findings

    Energy retrofits aim to improve the thermal performance of buildings’ external envelopes. With buildings of traditional construction there exists the risk that these improvements may lead to interstitial condensation and moisture accumulation. For historic timber-framed buildings, this potentially exposes the embedded historic timbers to conditions favouring fungal decay and insect infestation. Hygrothermal digital simulations can assess this risk, however these have limitations, especially regarding the study of historic and traditional materials, due to a lack of accurate material data. The research presented in this paper therefore utilizes the monitoring of physical test panels to examine the performance of four replacement infill details. These are, traditional wattle and daub, a composite of wood fibre and wood wool boards, expanded cork board, and hempcrete. The article focuses on the design and construction of the test cell and presents initial results from the first year of monitoring, following the initial drying phase. These showed no evidence of interstitial condensation in any of the panel build-ups, with increases in moisture content correlating directly with climatic measurements of wind-driven rain. Infill materials with low moisture permeability were seen to produce higher moisture contents at the interface with the external render due to the concentration of moisture at this point. Those panels finished in the more moisture permeable lime hemp plaster, overall present lower moisture contents, with reduced drying times. The use of perimeter, non-moisture permeable, sealants would appear to potentially trap moisture at the junction between infill and historic timber-frame. The monitoring work is ongoing.
      Bookmark

      Review information

      10.14293/S2199-1006.1.SOR-ARCH.AORB6G.v1.RXRRCR
      This work has been published open access under Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at www.scienceopen.com.

      General materials science,Historic preservation,Architecture
      Traditional Timber-Frame,Energy,Moisture Content; Monitoring,Interstitial Hygrothermal Behaviour,Sustainability in architecture and the built environment,Energy Retrofit,Climate change and urban areas

      Review text

      Please see attached pdf

      Comments

      Comment on this review