45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Ammonoid Paleobiology: From anatomy to ecology 

      Ammonoid Locomotion

      other
      , , ,
      Springer Netherlands

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: not found
          • Article: not found

          Locomotion: Energy Cost of Swimming, Flying, and Running

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cephalopod origin and evolution: A congruent picture emerging from fossils, development and molecules: Extant cephalopods are younger than previously realised and were under major selection to become agile, shell-less predators.

            Cephalopods are extraordinary molluscs equipped with vertebrate-like intelligence and a unique buoyancy system for locomotion. A growing body of evidence from the fossil record, embryology and Bayesian molecular divergence estimations provides a comprehensive picture of their origins and evolution. Cephalopods evolved during the Cambrian (∼530 Ma) from a monoplacophoran-like mollusc in which the conical, external shell was modified into a chambered buoyancy apparatus. During the mid-Palaeozoic (∼416 Ma) cephalopods diverged into nautiloids and the presently dominant coleoids. Coleoids (i.e. squids, cuttlefish and octopods) internalised their shells and, in the late Palaeozoic (∼276 Ma), diverged into Vampyropoda and the Decabrachia. This shell internalisation appears to be a unique evolutionary event. In contrast, the loss of a mineralised shell has occurred several times in distinct coleoid lineages. The general tendency of shell reduction reflects a trend towards active modes of life and much more complex behaviour. Copyright © 2011 WILEY Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The mid-Paleozoic precursor to the Mesozoic marine revolution

              The mid-Paleozoic was punctuated by a rapid radiation of durophagous (shell-crushing) predators. These new predators were primarily placoderm and chondrichthyan fishes but probably also included phyllocarid and eumalacostracan arthropods. Coincident with the radiation of these durophages, beginning in the mid-Devonian, there was an increase in the frequency of predation-resistant morphologies in a variety of marine invertebrate taxa. Among bellerophontid molluscs, disjunct coiling disappeared and umbilici became less common while the frequency of genera with sculpture increased. The abundance of brachiopod genera with spines on one or both valves increased dramatically. Sculpture became more pronounced and common among genera of coiled nautiloids. Inadunate and camerate crinoids showed a marked increase in spinosity, and all three crinoid subclasses tended to develop thicker thecal plates.
                Bookmark

                Author and book information

                Book Chapter
                2015
                July 23 2015
                : 649-688
                10.1007/978-94-017-9630-9_17
                f67613cd-1744-4d9c-abf8-ed872cbf041a
                History

                Comments

                Comment on this book

                Book chapters

                Similar content470

                Cited by12