9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Comprehensive Biotechnology 

      Metabolomics – The Combination of Analytical Biochemistry, Biology, and Informatics

      reference
      , , , ,
      Elsevier

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          The Bioperl toolkit: Perl modules for the life sciences.

          The Bioperl project is an international open-source collaboration of biologists, bioinformaticians, and computer scientists that has evolved over the past 7 yr into the most comprehensive library of Perl modules available for managing and manipulating life-science information. Bioperl provides an easy-to-use, stable, and consistent programming interface for bioinformatics application programmers. The Bioperl modules have been successfully and repeatedly used to reduce otherwise complex tasks to only a few lines of code. The Bioperl object model has been proven to be flexible enough to support enterprise-level applications such as EnsEMBL, while maintaining an easy learning curve for novice Perl programmers. Bioperl is capable of executing analyses and processing results from programs such as BLAST, ClustalW, or the EMBOSS suite. Interoperation with modules written in Python and Java is supported through the evolving BioCORBA bridge. Bioperl provides access to data stores such as GenBank and SwissProt via a flexible series of sequence input/output modules, and to the emerging common sequence data storage format of the Open Bioinformatics Database Access project. This study describes the overall architecture of the toolkit, the problem domains that it addresses, and gives specific examples of how the toolkit can be used to solve common life-sciences problems. We conclude with a discussion of how the open-source nature of the project has contributed to the development effort.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry.

            At least two independent parameters are necessary for compound identification in metabolomics. We have compiled 2 212 electron impact mass spectra and retention indices for quadrupole and time-of-flight gas chromatography/mass spectrometry (GC/MS) for over 1000 primary metabolites below 550 Da, covering lipids, amino acids, fatty acids, amines, alcohols, sugars, amino-sugars, sugar alcohols, sugar acids, organic phosphates, hydroxyl acids, aromatics, purines, and sterols as methoximated and trimethylsilylated mass spectra under electron impact ionization. Compounds were selected from different metabolic pathway databases. The structural diversity of the libraries was found to be highly overlapping with metabolites represented in the BioMeta/KEGG pathway database using chemical fingerprints and calculations using Instant-JChem. In total, the FiehnLib libraries comprised 68% more compounds and twice as many spectra with higher spectral diversity than the public Golm Metabolite Database. A range of unique compounds are present in the FiehnLib libraries that are not comprised in the 4345 trimethylsilylated spectra of the commercial NIST05 mass spectral database. The libraries can be used in conjunction with GC/MS software but also support compound identification in the public BinBase metabolomic database that currently comprises 5598 unique mass spectra generated from 19,032 samples covering 279 studies of 47 species (plants, animals, and microorganisms).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              pcaMethods--a bioconductor package providing PCA methods for incomplete data.

              pcaMethods is a Bioconductor compliant library for computing principal component analysis (PCA) on incomplete data sets. The results can be analyzed directly or used to estimate missing values to enable the use of missing value sensitive statistical methods. The package was mainly developed with microarray and metabolite data sets in mind, but can be applied to any other incomplete data set as well. http://www.bioconductor.org
                Bookmark

                Author and book information

                Book Chapter
                2011
                : 447-459
                10.1016/B978-0-08-088504-9.00052-0
                e63eb3e7-cf86-42f0-bd84-4717d7b5b7b5
                History

                Comments

                Comment on this book

                Book chapters

                Similar content3,702

                Cited by10