12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Time and Environmental Law : Telling Nature's Time 

      Telling the Time

      monograph
      Cambridge University Press

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references172

          • Record: found
          • Abstract: not found
          • Article: not found

          The value of the world's ecosystem services and natural capital

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A large and persistent carbon sink in the world's forests.

            The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year(-1)) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year(-1) from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year(-1) partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year(-1). Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year(-1), with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers.

              Urbanization contributes to the loss of the world's biodiversity and the homogenization of its biota. However, comparative studies of urban biodiversity leading to robust generalities of the status and drivers of biodiversity in cities at the global scale are lacking. Here, we compiled the largest global dataset to date of two diverse taxa in cities: birds (54 cities) and plants (110 cities). We found that the majority of urban bird and plant species are native in the world's cities. Few plants and birds are cosmopolitan, the most common being Columba livia and Poa annua. The density of bird and plant species (the number of species per km(2)) has declined substantially: only 8% of native bird and 25% of native plant species are currently present compared with estimates of non-urban density of species. The current density of species in cities and the loss in density of species was best explained by anthropogenic features (landcover, city age) rather than by non-anthropogenic factors (geography, climate, topography). As urbanization continues to expand, efforts directed towards the conservation of intact vegetation within urban landscapes could support higher concentrations of both bird and plant species. Despite declines in the density of species, cities still retain endemic native species, thus providing opportunities for regional and global biodiversity conservation, restoration and education.
                Bookmark

                Author and book information

                Book Chapter
                August 3 2017
                : 350-404
                10.1017/9781108120678.006
                d4a03906-9fc9-4ced-8730-100c2fe4bcb6
                History

                Comments

                Comment on this book

                Book chapters

                Similar content959