1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      The Handbook of Graphene Electrochemistry 

      Interpreting Electrochemistry

      other
      ,
      Springer London

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          Correlation of diffusion coefficients in dilute solutions

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites.

            Carbon, and particularly graphite in its various forms, is an attractive electrode material. Two areas of particular interest are modified carbon electrodes and carbon nanotube electrodes. In this article we focus on the relationship between surface structure and electrochemical and chemical reactivity of electrodes based on these materials. We overview recent work in this area which has led us to believe that much of the catalytic activity, electron transfer and chemical reactivity of graphitic carbon electrodes is at surface defect sites, and in particular edge-plane-like defect sites. We also question the claimed special "catalytic" properties of carbon nanotube modified electrodes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bismuth-coated carbon electrodes for anodic stripping voltammetry

              Bismuth-coated carbon electrodes display an attractive stripping voltammetric performance which compares favorably with that of common mercury-film electrodes. These bismuth-film electrodes are prepared by adding 400 microg/L (ppb) bismuth(III) directly to the sample solution and simultanously depositing the bismuth and target metals on the glassy-carbon or carbon-fiber substrate. Stripping voltammetric measurements of microgram per liter levels of cadmium, lead, thallium, and zinc in nondeaerated solutions yielded well-defined peaks, along with a low background, following short deposition periods. Detection limit of 1.1 and 0.3 ppb lead are obtained following 2- and 10-min deposition, respectively. Changes in the peak potentials (compared to those observed at mercury electrodes) offer new selectivity dimensions. Scanning electron microscopy sheds useful insights into the different morphologies of the bismuth deposits on the carbon substrates. The in situ bismuth-plated electrodes exhibit a wide accessible potential window (-1.2 to -0.2 V) that permits quantitation of most metals measured at mercury electrodes (except of copper, antimony, and bismuth itself). Numerous key experimental variables have been characterized and optimized. High reproducibility was indicated from the relative standard deviations (2.4 and 4.4%) for 22 repetitive measurements of 80 microg/L cadmium and lead, respectively. Such an attractive use of "mercury-free", environmetally friendly electrodes (with a performance equivalent to that of mercury ones) offers great promise to centralized and decentralized testing of trace metals.
                Bookmark

                Author and book information

                Book Chapter
                2014
                May 22 2014
                : 23-77
                10.1007/978-1-4471-6428-9_2
                9c0b92cb-70fb-4a19-a05c-03fa78e6e739
                History

                Comments

                Comment on this book