2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Plant Transcription Factors 

      Structure and Evolution of Plant MADS Domain Transcription Factors

      edited-book
      ,
      Elsevier

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          The role of DNA shape in protein-DNA recognition

          The recognition of specific DNA sequences by proteins is thought to depend on two types of mechanisms: one that involves the formation of hydrogen bonds with specific bases, primarily in the major groove, and one involving sequence-dependent deformations of the DNA helix. By comprehensively analyzing the three dimensional structures of protein-DNA complexes, we show that the binding of arginines to narrow minor grooves is a widely used mode for protein-DNA recognition. This readout mechanism exploits the phenomenon that narrow minor grooves strongly enhance the negative electrostatic potential of the DNA. The nucleosome core particle offers a striking example of this effect. Minor groove narrowing is often associated with the presence of A-tracts, AT-rich sequences that exclude the flexible TpA step. These findings suggest that the ability to detect local variations in DNA shape and electrostatic potential is a general mechanism that enables proteins to use information in the minor groove, which otherwise offers few opportunities for the formation of base-specific hydrogen bonds, to achieve DNA binding specificity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors.

            Mutations in the homeotic gene agamous of the plant Arabidopsis cause the transformation of the floral sex organs. Cloning and sequence analysis of agamous suggest that it encodes a protein with a high degree of sequence similarity to the DNA-binding region of transcription factors from yeast and humans and to the product of a homeotic gene from Antirrhinum. The agamous gene therefore probably encodes a transcription factor that regulates genes determining stamen and carpel development in wild-type flowers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complexes of MADS-box proteins are sufficient to convert leaves into floral organs.

              T Honma, K Goto (2001)
              Genetic studies, using floral homeotic mutants, have led to the ABC model of flower development. This model proposes that the combinatorial action of three sets of genes, the A, B and C function genes, specify the four floral organs (sepals, petals, stamens and carpels) in the concentric floral whorls. However, attempts to convert vegetative organs into floral organs by altering the expression of ABC genes have been unsuccessful. Here we show that the class B proteins of Arabidopsis, PISTILLATA (PI) and APETALA3 (AP3), interact with APETALA1 (AP1, a class A protein) and SEPALLATA3 (SEP3, previously AGL9), and with AGAMOUS (AG, a class C protein) through SEP3. We also show that vegetative leaves of triply transgenic plants, 35S::PI;35S::AP3;35S::AP1 or 35S::PI;35S::AP3;35S::SEP3, are transformed into petaloid organs and that those of 35S::PI;35S::AP3;35S::SEP3;35S::AG are transformed into staminoid organs. Our findings indicate that the formation of ternary and quaternary complexes of ABC proteins may be the molecular basis of the ABC model, and that the flower-specific expression of SEP3 restricts the action of the ABC genes to the flower.
                Bookmark

                Author and book information

                Book Chapter
                2016
                : 127-138
                10.1016/B978-0-12-800854-6.00008-7
                96ff2890-fa7b-4edb-bc9d-fe11fdd01d29
                History

                Comments

                Comment on this book

                Book chapters

                Similar content3,363

                Cited by10