73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016 

      3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation

      other

      Read this book at

      Publisher
      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: not found
          • Conference Proceedings: not found

          Fully convolutional networks for semantic segmentation

            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Rethinking the Inception Architecture for Computer Vision

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              3D Slicer as an image computing platform for the Quantitative Imaging Network.

              Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open-source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future directions that can further facilitate development and validation of imaging biomarkers using 3D Slicer. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and book information

                Book Chapter
                2016
                October 02 2016
                : 424-432
                10.1007/978-3-319-46723-8_49
                8f06839f-9871-41a8-9b0d-7187f46a9969

                http://www.springer.com/tdm

                History

                Comments

                Comment on this book