Browse
Publications
Preprints
About
About UCL Open: Env.
Aims and Scope
Editorial Board
Indexing
APCs
How to cite
Publishing policies
Editorial policy
Peer review policy
Equality, Diversity & Inclusion
About UCL Press
Contact us
For authors
Information for authors
How it works
Benefits of publishing with us
Submit
How to submit
Preparing your manuscript
Article types
Open Data
ORCID
APCs
Contributor agreement
For reviewers
Information for reviewers
Review process
How to peer review
Peer review policy
My ScienceOpen
Sign in
Register
Dashboard
Search
Browse
Publications
Preprints
About
About UCL Open: Env.
Aims and Scope
Editorial Board
Indexing
APCs
How to cite
Publishing policies
Editorial policy
Peer review policy
Equality, Diversity & Inclusion
About UCL Press
Contact us
For authors
Information for authors
How it works
Benefits of publishing with us
Submit
How to submit
Preparing your manuscript
Article types
Open Data
ORCID
APCs
Contributor agreement
For reviewers
Information for reviewers
Review process
How to peer review
Peer review policy
My ScienceOpen
Sign in
Register
Dashboard
Search
1
views
7
references
Top references
cited by
0
Cite as...
0 reviews
Review
0
comments
Comment
0
recommends
+1
Recommend
0
collections
Add to
0
shares
Share
Twitter
Sina Weibo
Facebook
Email
1,168
similar
All similar
Record
: found
Abstract
: not found
Book Chapter
: not found
Schiemann reaction
other
Author(s):
Jie Jack Li
Publication date
(Online):
June 27 2009
Publisher:
Springer Berlin Heidelberg
Read this book at
Publisher
Buy book
Review
Review book
Invite someone to review
Bookmark
Cite as...
There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.
Related collections
International Polymer Processing
Most cited references
7
Record
: found
Abstract
: not found
Article
: not found
Fluorodediazoniation in ionic liquid solvents: new life for the Balz–Schiemann reaction
Volker Gettwert
,
Kenneth Laali
(2001)
0
comments
Cited
17
times
– based on
0
reviews
Review now
Bookmark
Record
: found
Abstract
: not found
Article
: not found
Organic fluorine chemistry
Clay Sharts
(1968)
0
comments
Cited
6
times
– based on
0
reviews
Review now
Bookmark
Record
: found
Abstract
: not found
Article
: not found
Photochemical Schiemann reaction in ionic liquids
Jorge Heredia-Moya
,
Kenneth L Kirk
(2007)
0
comments
Cited
6
times
– based on
0
reviews
Review now
Bookmark
All references
Author and book information
Book Chapter
Publication date (Print):
2009
Publication date (Online):
June 27 2009
Pages
: 1-2
DOI:
10.1007/978-3-642-01053-8_228
SO-VID:
605b3ece-5b41-4aeb-9a41-c57100cefde3
History
Data availability:
Comments
Comment on this book
Sign in to comment
Book chapters
pp. 1
Alder ene reaction
pp. 1
Schmidt rearrangement
pp. 1
Schiemann reaction
pp. 1
Pictet–Spengler tetrahydroisoquinoline synthesis
pp. 3
Aldol condensation
pp. 6
Algar— Flynn— Oyamada Reaction
pp. 8
Allan–Robinson reaction
pp. 10
Arndt—Eistert homologation
pp. 12
Baeyer–Villiger oxidation
pp. 14
Baker–Venkataraman rearrangement
pp. 16
Bamford–Stevens reaction
pp. 18
Barbier coupling reaction
pp. 20
Bartoli indole synthesis
pp. 22
Barton radical decarboxylation
pp. 24
Barton–McCombie deoxygenation
pp. 26
Barton nitrite photolysis
pp. 28
Batcho–Leimgruber indole synthesis
pp. 30
Baylis–Hillman reaction
pp. 33
Beckmann rearrangement
pp. 36
Benzilic acid rearrangement
pp. 38
Benzoin condensation
pp. 40
Bergman cyclization
pp. 42
Biginelli pyrimidone synthesis
pp. 44
Birch reduction
pp. 46
Bischler–Möhlau indole synthesis
pp. 48
Bischler–Napieralski reaction
pp. 50
Blaise reaction
pp. 52
Blum–Ittah aziridine synthesis
pp. 54
Boekelheide reaction
pp. 56
Boger pyridine synthesis
pp. 58
Borch reductive amination
pp. 60
Borsche–Drechsel cyclizations
pp. 62
Boulton–Katritzky rearrangement
pp. 64
Bouveault aldehyde synthesis
pp. 65
Bouveault—Blanc reduction
pp. 66
Bradsher reaction
pp. 68
Brook rearrangement
pp. 70
Brown hydroboration
pp. 72
Bucherer carbazole synthesis
pp. 74
Bucherer reaction
pp. 76
Bucherer—Bergs reaction
pp. 78
Büchner ring expansion
pp. 80
Buchwald–Hartwig amination
pp. 84
Burgess reagent
pp. 87
Burke boronates
pp. 90
Cadiot–Chodkiewicz coupling
pp. 92
Camps quinoline synthesis
pp. 94
Cannizzaro reaction
pp. 96
Carroll rearrangement
pp. 98
Castro–Stephens coupling
pp. 100
Chan alkyne reduction
pp. 102
Chan–Lam C–X coupling reaction
pp. 105
Chapman rearrangement
pp. 107
Chichibabin pyridine synthesis
pp. 110
Chugaev elimination
pp. 112
Ciamician–Dennsted rearrangement
pp. 113
Claisen condensation
pp. 115
Claisen isoxazole synthesis
pp. 117
Claisen rearrangements
pp. 129
Clemmensen reduction
pp. 131
Combes quinoline synthesis
pp. 133
Conrad–Limpach reaction
pp. 135
Cope elimination reaction
pp. 137
Cope rearrangement
pp. 143
Corey–Bakshi–Shibata (CBS) reagent
pp. 146
Corey–Chaykovsky reaction
pp. 148
Corey–Fuchs reaction
pp. 150
Corey–Kim oxidation
pp. 152
Corey–Nicolaou macrolactonization
pp. 154
Corey–Seebach reaction
pp. 156
Corey–Winter olefin synthesis
pp. 159
Criegee glycol cleavage
pp. 161
Criegee mechanism of ozonolysis
pp. 162
Curtius rearrangement
pp. 165
Dakin oxidation
pp. 167
Dakin–West reaction
pp. 169
Darzens condensation
pp. 171
Delépine amine synthesis
pp. 173
de Mayo reaction
pp. 175
Demjanov rearrangement
pp. 179
Dess–Martin periodinane oxidation
pp. 182
Dieckmann condensation
pp. 184
Diels–Alder reaction
pp. 190
Dienone–phenol rearrangement
pp. 192
Di–π–methane rearrangement
pp. 194
Doebner quinoline synthesis
pp. 196
Doebner–von Miller reaction
pp. 198
Dötz reaction
pp. 200
Dowd–Beckwith ring expansion
pp. 202
Dudley reagent
pp. 204
Erlenmeyer–Plöchl azlactone synthesis
pp. 206
Eschenmoser’s salt
pp. 208
Eschenmoser–Tanabe fragmentation
pp. 210
Eschweiler–Clarke reductive alkylation of amines
pp. 212
Evans aldol reaction
pp. 214
Favorskii rearrangement
pp. 218
Feist–Bénary furan synthesis
pp. 220
Ferrier carbocyclization
pp. 222
Ferrier glycal allylic rearrangement
pp. 225
Fiesselmann thiophene synthesis
pp. 227
Fischer indole synthesis
pp. 229
Fischer oxazole synthesis
pp. 231
Fleming–Kumada oxidation
pp. 234
Friedel–Crafts reaction
pp. 238
Friedländer quinoline synthesis
pp. 240
Fries rearrangement
pp. 243
Fukuyama amine synthesis
pp. 245
Fukuyama reduction
pp. 247
Gabriel synthesis
pp. 250
Gabriel–Colman rearrangement
pp. 251
Gassman indole synthesis
pp. 253
Gattermann–Koch reaction
pp. 254
Gewald aminothiophene synthesis
pp. 257
Glaser coupling
pp. 262
Gomberg–Bachmann reaction
pp. 263
Gould–Jacobs reaction
pp. 266
Grignard reaction
pp. 268
Grob fragmentation
pp. 270
Guareschi–Thorpe condensation
pp. 271
Hajos–Wiechert reaction
pp. 273
Haller–Bauer reaction
pp. 274
Hantzsch dihydropyridine synthesis
pp. 276
Hantzsch pyrrole synthesis
pp. 277
Heck reaction
pp. 281
Hegedus indole synthesis
pp. 284
Henry nitroaldol reaction
pp. 286
Hinsberg synthesis of thiophene derivatives
pp. 288
Hiyama cross-coupling reaction
pp. 290
Hofmann rearrangement
pp. 292
Hofmann–Löffler–Freytag reaction
pp. 294
Horner—Wadsworth—Emmons reaction
pp. 296
Houben–Hoesch reaction
pp. 298
Hunsdiecker–Borodin reaction
pp. 300
Jacobsen–Katsuki epoxidation
pp. 302
Hell—Volhard—Zelinsky reaction
pp. 302
Japp–Klingemann hydrazone synthesis
pp. 304
Jones oxidation
pp. 309
Julia–Kocienski olefination
pp. 311
Julia–Lythgoe olefination
pp. 313
Kahne glycosidation
pp. 315
Knoevenagel condensation
pp. 317
Knorr pyrazole synthesis
pp. 319
Koch–Haaf carbonylation
pp. 320
Koenig–Knorr glycosidation
pp. 322
Kostanecki reaction
pp. 323
Kröhnke pyridine synthesis
pp. 325
Kumada cross-coupling reaction
pp. 328
Lawesson’s reagent
pp. 330
Leuckart–Wallach reaction
pp. 332
Lossen rearrangement
pp. 334
McFadyen–Stevens reduction
pp. 335
McMurry coupling
pp. 337
Mannich reaction
pp. 339
Martin’s sulfurane dehydrating reagent
pp. 341
Masamune–Roush conditions for the Horner–Emmons reaction
pp. 343
Meerwein’s salt
pp. 345
Meerwein–Ponndorf–Verley reduction
pp. 347
Meisenheimer complex
pp. 349
[1,2]-Meisenheimer rearrangement
pp. 350
[2,3]-Meisenheimer rearrangement
pp. 351
Meyers oxazoline method
pp. 353
Meyer–Schuster rearrangement
pp. 355
Michael addition
pp. 357
Michaelis–Arbuzov phosphonate synthesis
pp. 359
Midland reduction
pp. 361
Minisci reaction
pp. 363
Mislow–Evans rearrangement
pp. 365
Mitsunobu reaction
pp. 368
Miyaura borylation
pp. 370
Moffatt oxidation
pp. 371
Morgan–Walls reaction
pp. 373
Mori–Ban indole synthesis
pp. 375
Mukaiyama aldol reaction
pp. 377
Mukaiyama Michael addition
pp. 379
Mukaiyama reagent
pp. 382
Myers–Saito cyclization
pp. 383
Nazarov cyclization
pp. 385
Neber rearrangement
pp. 387
Nef reaction
pp. 389
Negishi cross-coupling reaction
pp. 391
Nenitzescu indole synthesis
pp. 393
Newman–Kwart rearrangement
pp. 395
Nicholas reaction
pp. 397
Nicolaou IBX dehydrogenation
pp. 399
Noyori asymmetric hydrogenation
pp. 401
Nozaki–Hiyama–Kishi reaction
pp. 403
Nysted reagent
pp. 404
Oppenauer oxidation
pp. 406
Overman rearrangement
pp. 408
Paal thiophene synthesis
pp. 409
Paal–Knorr furan synthesis
pp. 411
Paal–Knorr pyrrole synthesis
pp. 413
Parham cyclization
pp. 415
Passerini reaction
pp. 417
Paternó–Büchi reaction
pp. 419
Pauson–Khand reaction
pp. 421
Payne rearrangement
pp. 423
Pechmann coumarin synthesis
pp. 424
Perkin reaction
pp. 426
Petasis reaction
pp. 428
Petasis reagent
pp. 430
Peterson olefination
pp. 432
Pictet–Gams isoquinoline synthesis
pp. 436
Pinacol rearrangement
pp. 438
Pinner reaction
pp. 440
Polonovski reaction
pp. 442
Polonovski–Potier reaction
pp. 444
Pomeranz–Fritsch reaction
pp. 447
Prévost trans-dihydroxylation
pp. 448
Prins reaction
pp. 450
Pschorr cyclization
pp. 452
Pummerer rearrangement
pp. 454
Ramberg–Bäcklund reaction
pp. 456
Reformatsky reaction
pp. 458
Regitz diazo synthesis
pp. 460
Reimer–Tiemann reaction
pp. 461
Reissert reaction
pp. 463
Reissert indole synthesis
pp. 465
Ring-closing metathesis (RCM)
pp. 468
Ritter reaction
pp. 470
Robinson annulation
pp. 472
Robinson–Gabriel synthesis
pp. 474
Robinson–Schöpf reaction
pp. 476
Rosenmund reduction
pp. 478
Rubottom oxidation
pp. 480
Rupe rearrangement
pp. 482
Saegusa oxidation
pp. 484
Sakurai allylation reaction
pp. 486
Sandmeyer reaction
pp. 492
Schmidt’s trichloroacetimidate glycosidation reaction
pp. 494
Shapiro reaction
pp. 496
Sharpless asymmetric amino-hydroxylation
pp. 499
Sharpless asymmetric dihydroxylation
pp. 502
Sharpless asymmetric epoxidation
pp. 505
Sharpless olefin synthesis
pp. 507
Simmons–Smith reaction
pp. 509
Skraup quinoline synthesis
pp. 511
Smiles rearrangement
pp. 515
Sommelet reaction
pp. 517
Sommelet–Hauser rearrangement
pp. 519
Sonogashira reaction
pp. 521
Staudinger ketene cycloaddition
pp. 523
Staudinger reduction
pp. 525
Stetter reaction
pp. 527
Still–Gennari phosphonate reaction
pp. 529
Stille coupling
pp. 531
Stille–Kelly reaction
pp. 532
Stobbe condensation
pp. 534
Strecker amino acid synthesis
pp. 536
Suzuki–Miyaura coupling
pp. 538
Swern oxidation
pp. 540
Takai reaction
pp. 542
Tebbe’s reagent
pp. 544
TEMPO oxidation
pp. 546
Thorpe–Ziegler reaction
pp. 548
Tsuji–Trost reaction
pp. 551
Ugi reaction
pp. 554
Ullmann coupling
pp. 556
van Leusen oxazole synthesis
pp. 558
Vilsmeier– Haack reaction
pp. 560
Vinylcyclopropane–cyclopentene rearrangement
pp. 562
von Braun reaction
pp. 564
Wacker oxidation
pp. 566
Wagner–Meerwein rearrangement
pp. 568
Weiss–Cook reaction
pp. 570
Wharton reaction
pp. 572
White Reagent
pp. 576
Willgerodt–Kindler reaction
pp. 578
Wittig reaction
pp. 582
[1,2]-Wittig rearrangement
pp. 584
[2,3]-Wittig rearrangement
pp. 586
Wohl–Ziegler reaction
pp. 588
Wolff rearrangement
pp. 590
Wolff–Kishner reduction
pp. 592
Woodward cis-dihydroxylation
pp. 594
Yamaguchi esterification
pp. 596
Zincke reaction
Similar content
1,168
Schiemann reaction
Authors:
Jie Jack Li
Fluorodediazoniation in ionic liquid solvents: new life for the Balz–Schiemann reaction
Authors:
Volker Gettwert
,
Kenneth Laali
Isolation and characterization of a cDNA clone from Catharanthus roseus encoding NADPH:cytochrome P-450 reductase, an enzyme essential for reactions catalysed by cytochrome P-450 mono-oxygenases in plants.
Authors:
A H Meijer
,
M I Lopes Cardoso
,
J T Voskuilen
…
See all similar