16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      NETWORKING 2005. Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications Systems 

      Contrastive Learning for Unpaired Image-to-Image Translation

      other
      , , ,
      Springer International Publishing

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: not found
          • Article: not found

          Image Quality Assessment: From Error Visibility to Structural Similarity

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

            In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              ImageNet: A large-scale hierarchical image database

                Bookmark

                Author and book information

                Book Chapter
                2020
                November 05 2020
                : 319-345
                10.1007/978-3-030-58545-7_19
                21bc7a93-fdad-434c-818d-ff29d2041f35
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,414

                Cited by33