Even during well-calibrated cognitive tasks, successive brain responses to repeated identical stimulations are highly variable. The source of this variability is believed to reside mainly in fluctuations of the subject's cognitive "context" defined by his/her attentive state, spontaneous thought process, strategy to carry out the task, and so on... As these factors are hard to manipulate precisely, they are usually not controlled, and the variability is discarded by averaging techniques. We combined first-person data and the analysis of neural processes to reduce such noise. We presented the subjects with a three-dimensional illusion and recorded their electrical brain activity and their own report about their cognitive context. Trials were clustered according to these first-person data, and separate dynamical analyses were conducted for each cluster. We found that (i) characteristic patterns of endogenous synchrony appeared in frontal electrodes before stimulation. These patterns depended on the degree of preparation and the immediacy of perception as verbally reported. (ii) These patterns were stable for several recordings. (iii) Preparatory states modulate both the behavioral performance and the evoked and induced synchronous patterns that follow. (iv) These results indicated that first-person data can be used to detect and interpret neural processes.