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Abstract The 2020 Atlantic hurricane season was extremely active and included, as of early November,
six hurricanes that made landfall in the United States during the global coronavirus disease 2019
(COVID‐19) pandemic. Such an event would necessitate a large‐scale evacuation, with implications for the
trajectory of the pandemic. Here we model how a hypothetical hurricane evacuation from four
counties in southeast Florida would affect COVID‐19 case levels. We find that hurricane evacuation
increases the total number of COVID‐19 cases in both origin and destination locations; however, if
transmission rates in destination counties can be kept from rising during evacuation, excess
evacuation‐induced case numbers can be minimized by directing evacuees to counties experiencing lower
COVID‐19 transmission rates. Ultimately, the number of excess COVID‐19 cases produced by the
evacuation depends on the ability of destination counties to meet evacuee needs while minimizing virus
exposure through public health directives. These results are relevant to disease transmission during
evacuations stemming from additional climate‐related hazards such as wildfires and floods.

Plain Language Summary In recent years hurricane evacuations in the United States have
displaced millions of people from their homes. Amid the ongoing coronavirus disease 2019 (COVID‐19)
pandemic, such an evacuation—and the associated increase in human‐to‐human interactions—poses an
additional risk of disease transmission. In this study, we use an epidemiological model to simulate a
hypothetical hurricane evacuation from southeast Florida. We find that evacuation is likely to increase the
total number of COVID‐19 cases. However, directing evacuees to locations experiencing lower
COVID‐19 transmission rates and simultaneously minimizing human contact during evacuation could
reduce the excess number of infections. Our results indicate that evacuation‐induced COVID‐19 infections
can be minimized by optimizing evacuation plans based on real‐time information about disease
incidence and transmission.

1. Introduction

The combination of the coronavirus disease 2019 (COVID‐19) pandemic, existing racial and socioeconomic
inequalities, and environmental stressors exacerbated by climate change is exposing the many ways in
which “compound risks” threaten human lives and well‐being while straining the ability of governments
at all scales to limit the damage from any one threat on its own (Phillips et al., 2020). Intersections of climate
extremes with the pandemic—recent widespread flooding in South Asia at a time of rapidly increasing
COVID‐19 caseloads, for example—have made clear that the consequences of such compound risk events
can be lethal, though the underreporting of cases around the world (Lau et al., 2020) and widely varying
testing capabilities (Kavanagh et al., 2020) make it difficult to accurately quantify their magnitude.

During the 2020 Atlantic hurricane season, COVID‐19 cases were widespread and abundant in many
hurricane‐prone areas of the United States. With six hurricanes making landfall in the nation at the time
of this writing, the nation repeatedly experienced the collision of geophysical hazards and the pandemic.
This study therefore addresses how decision making around one key aspect of hurricane response—evacua-
tion—could influence the trajectory of the pandemic in the United States and be optimized to limit excess
COVID‐19 cases. With future global warming expected to continue the observed trend toward increasingly
intense Atlantic hurricanes (Kossin et al., 2020; Seneviratne et al., 2012), understanding how to manage
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and minimize the impact of the combined risks associated with a major hurricane and a global pandemic
could prove critical both later this year and in the long term as the risks of such simultaneous disasters
increase around the world.

Efficient, effective evacuations—whether voluntary or mandatory—are a critical component of ensuring
public safety in the face of geophysical hazards. The scale of recent evacuations from U.S. Southeast and
Gulf Coast states has been large: During Hurricanes Matthew (2016), Irma (2017), and Dorian (2019), for
example, roughly 2.5, 6.5, and 1.1million people, respectively, were under evacuation orders (Han et al., 2019;
Roache, 2019; Wong et al., 2018). By changing the distribution of people for days or weeks, a large‐scale eva-
cuation amid a pandemic has the potential to alter the trajectory and geographic distribution of infections.
And by temporarily relocating from their own homes into potentially shared living arrangements where
levels of social contact are higher, evacuees may experience greater transmission risk both during and after
an evacuation.

This analysis evaluates how a large‐scale evacuation of the southeast Florida coast from a hypothetical
Category 3 hurricane would affect the total number of COVID‐19 cases and their spatial distribution in evac-
uees' origin and destination counties. This is accomplished by first building a hypothetical hurricane evacua-
tion scenario from previously published studies of evacuation behavior in the southeast U.S. region. We then
use a simple, two‐county infectious disease model to identify the most relevant evacuation and epidemiolo-
gical characteristics influencing COVID‐19 case counts. The findings from these simulations are used to
inform experiments with a larger metapopulation model representing SARS‐CoV‐2 transmission in all
3,142 U.S. counties. The metapopulation model was first described in Pei et al. (2020) and has been used
by federal, state, and local health agencies to inform their response to COVID‐19. Here, we adapt this meta-
population model to simulate hurricane evacuation scenarios in order to quantify potential increases in
transmission related to an evacuation. We show that the number of excess cases occurring during an evacua-
tion is sensitive to the choice of destination locations for the evacuees. We demonstrate the use of an optimi-
zation algorithm to minimize the number of excess cases resulting from an evacuation event by directing
evacuees to destinations with low COVID‐19 transmission rates.

2. Materials and Methods
2.1. Hurricane Evacuation Scenario Development

To develop a hypothetical hurricane evacuation scenario for southeast Florida, we drew from previously
published hurricane evacuation studies focused on Category 3+ hurricanes that have affected the
Southeast or Gulf Coast regions of the United States (Baker, 1994; Cutter et al., 2011; Lindell et al., 2011,
2020; Martín et al., 2017; Noltenius, 2008; Stein et al., 2010; Wong et al., 2018; Wu et al., 2012; Yin, 2013;
Yin et al., 2014; Zhang et al., 2004). We chose southeast Florida for several reasons: It is a region that has
experienced numerous hurricanes in the past; evacuations from the region can involve millions of people;
and there were previously published data regarding evacuation behavior from the region. In this scenario,
we assumed a Category 3 hurricane approaching the southeast Florida coast along a track that would neces-
sitate evacuations from Palm Beach (Palm Beach County EMS, n.d.), Broward (Evacuation zones, routes and
shelters, 2016), Miami‐Dade (Miami Dade County, 2020), and Monroe (Florida State Emergency Response
Team & South Florida Regional Planning Council, 2019) Counties.

We obtained the population under mandatory evacuation orders in each county from GIS shapefiles of
the zones of mandatory evacuation from a Category 3+ hurricane for each county (Florida Hurricane
Evacuation Zones [FeatureServer], 2019). The mandatory evacuation zones—and therefore the popula-
tion living within them—are the same for Category 4 and 5 hurricanes as they are for Category 3
storms. We then calculated the percent of the population living within mandatory evacuation zones that
would actually comply with evacuation orders based on a Category 3 or stronger hurricane by averaging
the compliance rate from eight regionally relevant studies of evacuation behavior (Baker, 1994; Cutter
et al., 2011; Lindell et al., 2011; Martín et al., 2017; Stein et al., 2010; Wong et al., 2018; Yin et al., 2014;
Zhang et al., 2004). We found that the average evacuation order compliance rate from these studies was
66%, though the compliance rate tends to increase with storm strength. Thus, if were we to model a
Category 4 or 5 hurricane, the evacuee population would likely be larger. Because many people living
outside of the mandatory evacuation zones voluntarily choose to evacuate during hurricanes as well,
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we used the same approach to calculate the percent of the population living outside of mandatory eva-
cuation zones but within the affected counties that would evacuate. Based on four studies of this “sha-
dow evacuation” phenomenon, we determined that an average of 47% of county residents outside
mandatory evacuation zones would also evacuate (Cutter et al., 2011; Lindell et al., 2011; Wong, Pel,
et al., 2020; Wong et al., 2018; Yin et al., 2014). The mandatory and voluntary evacuees together repre-
sent 48% of each origin county's population. We then determined that 19% of these evacuees would relo-
cate within their respective counties based on the average from four evacuation behavior studies (Dash
& Morrow, 2000; Dow & Cutter, 2002; Martín et al., 2017; Wong, Pel, et al., 2020; Wong et al., 2018; Wu
et al., 2012).

Finally, to determine the destination counties of evacuees from each of the four origin counties, we obtained
raw post‐Hurricane Irma survey data (Wong, Pel, et al., 2020; Wong et al., 2018). These data allowed us to
identify both the destination counties and the percent of evacuees choosing each destination county. We
then apportioned evacuees leaving the four origin counties to each destination county.

2.2. Two‐County Model of COVID‐19 Transmission

In order to identify the most sensitive factors driving the COVID‐19 transmission during evacuation, we first
ran simulations using a simple two‐county model. This model describes the transmission dynamics of
COVID‐19 during a hurricane evacuation from an origin (County 1) to a destination (County 2).
Mathematically, the transmission dynamics in the origin and destination are depicted by a susceptible‐
exposed‐infected‐recovered (SEIR) model. We simulate the disease transmission as a stochastic Markov pro-
cess using the following equations:

Si t þ 1ð Þ ¼ Si tð Þ − βiSi tð ÞIri tð Þ
Ni

−
μβiSi tð ÞIui tð Þ

Ni
; (1)

Ei t þ 1ð Þ ¼ Ei tð Þ þ βiSi tð ÞIri tð Þ
Ni

þ μβiSi tð ÞIui tð Þ
Ni

−
Ei tð Þ
Z

; (2)

Iri t þ 1ð Þ ¼ Iri tð Þ þ α
Ei tð Þ
Z

−
Iri tð Þ
D

; (3)

Iui t þ 1ð Þ ¼ Iui tð Þ þ 1 − αð ÞEi tð Þ
Z

−
Iui tð Þ
D

; (4)

Ri t þ 1ð Þ ¼ Ri tð Þ þ Iri tð Þ
D

þ Iui tð Þ
D

: (5)

Here Ni, Si(t), Ei(t), Iri tð Þ, Iui tð Þ, and Ri(t) are the total, susceptible, exposed, reported infected, unreported
infected, and recovered population in county i on day t; βi is the transmission rate in county i; μ is the rela-
tive transmissibility for unreported infections; Z is the average latency period; D is the average duration of
infectiousness; and α is the fraction of reported infections. The effective reproductive number, which
quantifies the local transmission rate, is computed as Re = βiD[α + μ(1 − α)]Si/Ni using the next genera-
tion matrix approach.

During evacuation, we assume a fraction (peva) of the population is evacuated fromCounty 1 to County 2 and
mixes with the local population for Teva days. Individuals within each compartment are randomly drawn
from the population in the origin. We track the infections in the evacuated population in County 2, which
then return to the origin after the evacuation and mix with the population therein. To account for the
increased human interactions associated with evacuating to shared living spaces (Wong et al., 2018), we
additionally assume the transmission rates in the origin and destination are elevated during a period that
spans the evacuation process. Specifically, the transmission rate in the origin is increased by 20% starting
from 3 days prior to the evacuation until 3 days after the return of evacuees. The transmission rate in the
destination is increased by 20% during the evacuation.

In model simulations, we fixed the following parameters in Equations 1–5: total population N1 = N2 = 106;
reporting rate α = 0.1; relative transmissibility μ = 0.64; latency period Z = 4 days; and infectious period
D = 4 days. Denote the daily reported cases in the origin and destination as casei. To initiate model simula-
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tions, we set Iri 0ð Þ ¼ caseiD, Iui 0ð Þ ¼ Iri 0ð Þ=α − Iri 0ð Þ,Ei 0ð Þ ¼ Iri 0ð Þ þ Iui 0ð Þ, Ri(0) = 0.05Ni andSi 0ð Þ ¼ Ni − Ei

0ð Þ − Iri 0ð Þ − Iui 0ð Þ − Ri 0ð Þ. Model simulations were generated for the following stages after Day 0: 14 days
of local transmission, 3 days of preevacuation (with elevated transmission rate in the origin), Teva days
of evacuation (with elevated transmission rates in both the origin and destination counties), 3 days of
postevacuation (with elevated transmission rate in the origin), and 28 days of additional postevacuation
simulation.

The objective of this two‐county modeling exercise was to explore model parameter space and determine
which combinations of parameters would produce the most favorable outcomes. We varied six parameters
to generate a large number of parameter combinations for use in model simulation: β1, β2 = 0.1, 0.2,…,
0.8; Teva = 3, 4,…, 10 days; peva = 0.1, 0.2,…, 0.8; case1, case2 = 50, 100,…, 400. In total, 86 = 262,144 para-
meter combinations were simulated. For comparison, we also ran a simulation without evacuation for each
parameter combination and computed the percentage change of total cases in the origin and destination
counties attributed to evacuation. We defined favorable parameter combinations as the 10% of simulations
producing the lowest percentage increase (or highest percentage reduction) of reported cases in the origin
county, the destination county and both counties combined. Within this favorable subset, we further
explored the sensitivity of reported COVID‐19 cases to each parameter by inspecting the marginal distribu-
tions of those six parameters.

2.3. Simulating COVID‐19 Transmission in the United States

Following the two‐county model analysis, we conducted in‐depth COVID‐19 simulations using a nation‐
widemetapopulation SEIRmodel representing all 3,142 U.S. counties (Pei et al., 2020). In this model, disease
transmission in each county follows SEIR dynamics but is also influenced by movement to and from
other counties. The model equations are presented in the supporting information. Similar models have
been used to simulate COVID‐19 transmission in China (Li et al., 2020) and influenza transmission in
the United States (Pei et al., 2018; Pei & Shaman, 2020). The local effective reproductive number is
derived as Re = βiD[α+ μ(1 − α)]Si/Ni. To account for reporting delays in COVID‐19 case and death
observations, we mapped simulated documented infections to confirmed cases using a separate observa-
tional delay model fitted to the U.S. case data (Pei & Shaman, 2020).

We considered two types of movement in the baseline metapopulation model: daily work commuting and
random movement. To simulate movement prior to 15 March 2020, we used information on county‐to‐
county work commuting that is publicly available from the U.S. Census Bureau. After 15 March, the census
survey data are no longer representative due to changes of mobility behavior in response to COVID‐19 con-
trol measures. Therefore, in simulatingmovement after 15March 2020, we used estimates of the reduction of
intercounty visitors to points of interest (POIs) (e.g., restaurants and stores) to inform declines of intercounty
movement on a county‐by‐county basis. We generated these estimates using data from SafeGraph
(SafeGraph, n.d.). We further assumed that the number of random visitors between two counties is propor-
tional to the average number of commuters between them. As the population present in each county is
different during daytime and nighttime, we modeled the transmission dynamics of COVID‐19 separately
for these two time periods.

We calibrated the transmission model against county‐level case and death data reported from 21 February
through 23 July 2020 (USAFacts, 2020), which produced an estimate of model parameters and state vari-
ables. We then ran simulations representing the following stages: 3 days of preevacuation, 7 days of evacua-
tion, 3 days of postevacuation, and 14 days after postevacuation. For comparison, we also ran simulations
without evacuation and increase of transmission rates in origin and destination counties. An ensemble of
100 trajectories were generated to represent the uncertainty arising from different initial conditions and
stochastic dynamics.

In the modeled hurricane evacuation, Vji evacuees travel from origin i to destination j and mix with the local
population for Teva = 7 days, before returning to origin i. As for the two‐county model, we increased the
transmission rate in origin counties by 20% during the 3‐day preevacuation, 7‐day evacuation, and 3‐day
postevacuation. Three scenarios in which the transmission rate in destination counties is increased by 0%,
10%, and 20% were simulated to compare different effects of hosting evacuees on local disease transmission.

10.1029/2020GH000319GeoHealth

PEI ET AL. 4 of 14



The parameters and settings in the full model simulation and the following optimization analysis are
reported in Table S1.

2.4. The Greedy Algorithm to Optimize Evacuation

We developed a greedy optimization algorithm aimed at minimizing total excess COVID‐19 cases by strate-
gically assigning evacuees to optimal destination counties. In the evacuation optimization, we assume that a
fraction p of evacuees from an origin to a destination will not change their evacuation plans (for reasons such
as personal connections at the destination or budgetary limitations) and the capacity of accepting evacuees
for each destination j is Cj. Denote the baseline evacuation matrix as V, where Vji represents the number
of evacuees from origin i to destination j. The optimization objective is to assign the rest of evacuees
(i.e., (1 − p) × ∑jVji from origin i) to destinations in an optimal way that minimizes the total infections in
both origin and destination counties. Finding the exact solution to this combinatorial optimization problem
is computationally challenging due to the large number of options.

In this study, we use a practically feasible greedy optimization approach that prioritizes moving the unas-
signed evacuees to destinations with low Re. Specifically, we start from the evacuation matrix pV that repre-
sents evacuees assigned a destination. In each step of greedy search, we run a series of simulations, each one
filling the available evacuee slots in the destination with the lowest Re from one of the origin counties. We
select the origin county that generates the minimum number of reported cases and assign them to the des-
tination county. We repeat this greedy search for each successive destination county until all evacuees are
assigned a destination. The pseudocode for this greedy algorithm is provided in the supporting information.
In this study, we assume 10% of evacuees from an origin to a destination in the baseline evacuation matrix V
cannot be reallocated (i.e., p = 0.1), and the capacity of each destination is 120% of the evacuees in the base-
line scenario V (i.e., Cj = 1.2∑iVji).

3. Data

The model optimization uses COVID‐19 county‐level confirmed case and death data from USAFacts
(USAFacts, 2020). These data are compiled by USAFacts from Centers for Disease Control and Prevention
(CDC), state and local health departments. County population data are from the U.S. Census Bureau
(U.S. Census Bureau, 2015).

Movement between counties in the metapopulation model is derived from data documenting county‐to‐
county work commuting that are publicly available from the U.S. Census Bureau (U.S. Census
Bureau, 2015) and POI data from SafeGraph (SafeGraph, n.d.).

Data used to construct the hurricane evacuation scenario are publicly available in references cited through-
out section 2. The code and resulting data sets are available with no restrictions in Pei (2020).

4. Results
4.1. Identifying Key Parameters Using a Two‐County Model

We used a simplified, two‐county metapopulation model, representing a generic pair of origin and destina-
tion counties, to determine the factors that have greatest influence on COVID‐19 case numbers (section 2
and Figure 1a). Specifically, we evaluated the effects of six evacuation and epidemiological characteristics
on COVID‐19 case numbers: transmission rates in origin and destination counties (quantified by the effec-
tive reproductive number, Re), the fraction of the origin county population that evacuates (peva), the duration
of the evacuation period (Teva), and daily case numbers in the origin and destination counties (caseori and
casedest). We simulated an evacuation by moving a fraction of the population from the origin to the destina-
tion county. Evacuees then mixed with the population of the destination county, before returning home.
This simulation was repeated using different combinations of each of the six characteristics in order to deter-
mine the effects of each on COVID‐19 case numbers during and following the evacuation.

We found that transmission rates in the origin and destination counties were the primary determinant of
case numbers (section 2 and Figure 1b): evacuating individuals from a high‐Re origin to a low‐Re destination
produced fewer additional cases in the origin county and in the origin and destination county combined. For
the destination county alone, it was preferable to accept evacuees from a low‐Re origin. However, in a real
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hurricane landing, the counties that require evacuation are determined by the path of the hurricane; that is,
a low‐Re origin cannot be stipulated. The length of evacuation and the number of people evacuating also
influenced case numbers; however, these two characteristics are also expected to be shaped more by the
specific circumstances necessitated by a particular hurricane rather than by public health directives.

4.2. Full Model Simulations of Hurricane Evacuation Scenarios

Next we used a national county‐scale metapopulation model and a suite of scenarios to further explore
how transmission rates and hurricane evacuation affect COVID‐19 incidence in origin and destination
counties (section 2). All scenarios assume that a Category 3 hurricane is approaching southeast Florida
and that people living in evacuation zones within Palm Beach, Broward, Miami‐Dade, and Monroe
Counties are ordered to evacuate. Based on studies of evacuation compliance and behavior in this region
for Category 3+ hurricanes, we estimate that 48% of each county's population would evacuate
(Baker, 1994; Cutter et al., 2011; Lindell et al., 2011; Martín et al., 2017; Stein et al., 2010; Yin et al., 2014;
Wong, Pel, et al., 2020; Wong et al., 2018; Zhang et al., 2004) (section 2). Assuming that 19% of evacuees
relocate elsewhere within their respective counties, this leads to a total of 2.3 million evacuees leaving
the four affected counties (Dash & Morrow, 2000; Dow & Cutter, 2002; Martín et al., 2017; Wong, Pel,
et al., 2020; Wong et al., 2018; Wu et al., 2012).

For each scenario, evacuees were assigned to a different set of destination counties based on a list of 165
possible destinations across 26 states identified during post‐Hurricane Irma surveys (Wong, Pel, et
al., 2020; Wong et al., 2018). In the baseline scenario, evacuees were assigned to all 165 destination counties
in proportion to observed evacuation choices during Hurricane Irma. The number of evacuees assigned to
each destination county in the southeast United States (Alabama, Florida, Georgia, Kentucky, Mississippi,
North Carolina, South Carolina, and Tennessee) for this baseline scenario is shown in Figure 2a (see full
map in Figure S1a). In order to explore the effects of destination county transmission levels on the number
of evacuation‐associated COVID‐19 cases, we further proposed two hypothetical scenarios in which evac-
uees were assigned to locations with high Re or low Re, as estimated at the start of the evacuation scenario.
In the high (low) Re scenario, 90% of the evacuees assigned to each county in the baseline scenario were
instead diverted to the subset of 82 counties with the highest (lowest) Re, weighted by the proportion of evac-
uees sent to each of these counties in the baseline scenario (section 2).

Figure 1. Results from the two‐county model showing that origin and destination transmission rates have the greatest influence on final case numbers.
(a) A schematic diagram for the two‐county model. Blue and orange boxes represent the origin and destination populations. Red dots within boxes represent
infected individuals. (b) The marginal distribution of six parameters for the top 10% of combinations that lead to the lowest percentage increase (or highest
percentage reduction) of reported cases in the origin county (solid red lines), the destination county (solid orange lines), and both counties combined (solid blue
lines). Here Rori

e and Rdest
e represent the transmission rates in the origin and destination; caseori and casedest represent the daily cases in the origin and

destination; Teva is the duration of evacuation; and peva is the fraction of the origin population evacuating. The step changes in (b) are due to the discrete values
used in model simulations.
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Scenario projections were initiated from the model state calibrated to observed county‐level COVID‐19 case
and death data from 21 February through 23 July 2020 (section 2). The estimated effective reproductive num-
bers (Re) in origin and destination counties at the start of simulations are shown in Figure 2b (see full map in
Figure S1b). Evacuees tend to stay with friends or family, in hotels/motels, or in public shelters, each of
which would likely increase transmission opportunities relative to simply staying home (Wong et al., 2018).
To reflect this, we assume the COVID‐19 transmission rate in destination counties increases during the eva-
cuation period by either 0%, 10%, or 20%. These different levels of transmission rate can be interpreted as
varying levels of control effected in destinations during evacuation, as well as differences in transmission
potential associated with different types of accommodation (e.g., staying with friends/families, hotels, or
shelters), though these detailed processes are not explicitly simulated. In addition, to reflect periods of hur-
ricane preparation and recovery (Lindell et al., 2020; Noltenius, 2008; Yin, 2013), we elevated the transmis-
sion rate in the origin counties by 20% beginning 3 days prior to evacuation and ending 3 days after the
return of evacuees (more detailed simulation settings are provided in section 2). For comparison, we also
generated simulations for the same period but without evacuation.

In all scenarios, combined cases in origins and destinations are primarily driven by ongoing local COVID‐19
transmission dynamics (Figure S2 and Table S2); however, evacuation does alter disease outcomes. In the
baseline scenario, total COVID‐19 cases in the origin and destination counties increase significantly relative
to the no‐evacuation scenario (Figure 2c and Table 1; Wilcoxon signed rank test), indicating evacuation in

Figure 2. Simulations for evacuation using the national county‐level transmission model. (a) The number of evacuees accepted by destination counties in the
baseline scenario in southeast United States. (b) The estimated effective reproductive numbers Re for both origin and destination counties in southeast
United States on 23 July 2020. (c) Comparison of excess cases in origin and destination counties combined (left column), only origin counties (middle column) and
only destination counties (right column) for the baseline, low and high evacuation scenarios. Simulations were performed for three settings: no increase
(top row), 10% increase (middle row), and 20% increase (bottom row) of the transmission rates in destination counties. Box plots show the median and
interquartile and whiskers show the 95% CIs. Asterisks indicate that excess cases are significantly lower or higher than the baseline scenario (Wilcoxon signed
rank test, p < 10−5). Results are obtained from 100 model simulations; the box and whisker distributions show variations across simulation runs.
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and of itself can cause a statistically significant increase of COVID‐19 cases. Due to the lag between infection
and confirmation, a proportion of evacuees who contracted COVID‐19 while in a destination county would
be reported in their origin county after returning home. In addition, we assume an elevated transmission
rate in origin counties throughout the simulation period to reflect disruptions related to the hurricane
(e.g., crowding in grocery and hardware stores as people stock up on supplies) which contributes to the
increase in COVID‐19 cases in origin counties. Time series of confirmed cases in both origin and
destination counties under the no‐evacuation and high evacuation scenarios are presented in Figure S3.

As indicated by the low and high scenarios, the number of COVID‐19 cases resulting from evacuation is sig-
nificantly lower (higher) than the baseline scenario if evacuees are directed to counties with lower (higher)
transmission rates. However, as the transmission rate in the destination counties increases, the differences
between the low and high scenarios become less pronounced. This result indicates that the benefits of a
directed evacuation would be amplified by more stringent control efforts in destination counties.

4.3. Greedy Optimization Method to Minimize COVID‐19 Cases

The model simulations for our hypothetical evacuation scenarios indicate that a strategic evacuation plan
could reduce excess COVID‐19 infections. However, these scenarios neither accounted for the accommoda-
tion capacities of destination counties nor provided a framework for optimizing evacuation plans.

To address these issues, we developed a greedy search optimization algorithm aimed at minimizing total
excess COVID‐19 cases by strategically assigning evacuees to optimal destination counties. As indicated by
the two‐county model simulations, evacuating individuals to destinations with low Re reduces COVID‐19
transmission. However, given the varying prevalence of infection in origin counties and the nonlinear
transmission dynamics, it is not straightforward to determine the optimal number of evacuees from each
origin county that should be prioritized and redirected to each of the lowest‐Re destinations. In conducting
the optimization, we imposed the following constraints on human movement: (1) We assumed that a frac-
tion of evacuees cannot be redirected from their baseline destination county, representing individuals
whose choice of destination will not be influenced by evacuation directives, perhaps due to financial con-
straints or preferences to stay with family; and (2) we prescribed a capacity limit on the number of evac-
uees received by each destination county. The greedy search starts from an evacuation matrix representing
the evacuees who cannot be redirected from their destination and then iteratively directs the remaining
evacuees to destination counties with lowest Re. In each iteration, the algorithm selects which origin coun-
ties will be assigned the evacuee slots available in a destination county. This search is repeated for each
successive destination county until all evacuees are assigned a destination (section 2 and supporting
information).

We repeated this evacuation optimization with three different settings: no increase, 10% increase, and 20%
increase of transmission rates in destination counties, again to reflect differences in control efforts and
accommodation type. We assumed that 10% of evacuees will maintain their original destination and are

Table 1
Full Metapopulation Model Simulation of the Median Number of Excess Cases in Origin and Destination Counties for Different Evacuation Scenarios (Baseline, Low,
High, and Optimized) and Different Increases of Transmission Rates (Re) in Destination Counties (No Change, 10% Increase, and 20% Increase)

0% Reincrease in destination 10% Reincrease in destination 20% Reincrease in destination

Origin excess
cases

Destination excess
cases

Origin excess
cases

Destination excess
cases

Origin excess
cases

Destination excess
cases

Baseline evacuation 7,244 (4.2%) 5,448 (1.0%) 7,853 (4.6%) 28,661 (5.5%) 8,973 (5.2%) 52,478 (10.0%)
High Re evacuation 11,593 (6.7%) 5,209 (1.0%) 12,173 (7.1%) 27,649 (5.3%) 14,338 (8.3%) 51,996 (9.9%)
Low Re evacuation 4,409 (2.6%) 1,999 (0.38%) 5,143 (3.0%) 27,270 (5.2%) 6,669 (3.9%) 50,080 (9.5%)
Optimized evacuation 5,441 (3.2%) 3,628 (0.69%) 4,989 (2.9%) 25,919 (4.9%) 7,333 (4.3%) 50,724 (9.7%)

Note. Simulations were generated from 24 July to 20 August 2020, representing the following stages: 3 days of preevacuation, 7 days of evacuation, 3 days of post-
evacuation, and 14 days after postevacuation. Note that the high and low Re scenarios are not subject to the constraint of destination capacity, whereas the opti-
mized scenario takes into account a hypothetical capacity for each destination county. Percentage increase relative to the no evacuation scenario is also reported
in parentheses.
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thus not redirected and that each destination has a capacity of 120% of the evacuees accepted in the baseline
scenario. We then generated the optimized evacuation plan for each setting. During the optimization pro-
cess, assigning more evacuees to low‐Re counties led to a reduced number of total infections compared to
the baseline scenario (Figure S4). The optimized top 20 destinations for the four origin counties are reported
in Tables S3–S5. In Figure 3a, we show the change in the number of evacuees to each destination in south-
east United States for the optimized evacuation scenario with a 10% increased transmission rate in destina-
tion counties (see full map in Figure S5). In general, evacuees who traveled to high‐Re destinations in the
baseline scenario were redirected to low‐Re destinations. For all three transmission rate scenarios, the opti-
mized evacuation effectively reduces the number of excess cases in both origin and destination counties
compared to the baseline scenario (Figure 3b). The reduction is greatest (up to 30%) for the scenario in which
there is no increase in the transmission rate in destination counties, which highlights the crucial role of
effective intervention during evacuation. In this optimization example, the fraction of nonallocable evacuees
and destination capacity are hypothetical, as these quantities are unknown. If such information were avail-
able or could be estimated using socioeconomic and geographic characteristics, the optimization could be
tailored to reflect more realistic constraints on evacuation. A sensitivity analysis assuming 20% evacuees can-
not be relocated yields similar results (Figure S6).

5. Discussion and Conclusions

The results of this study have far‐reaching consequences not only for hurricane evacuation this season but
also for long‐term U.S. hurricane preparedness and evacuation planning.

Research suggests that people rely on past experiences when choosing their evacuation routes and destina-
tions (Mesa‐Arango et al., 2013; Wu et al., 2012). This study shows that excess COVID‐19 cases could be
minimized by instead directing evacuees to either counties with lower COVID‐19 transmission rates or an
optimized set of counties. While decisions about whether to evacuate and where to go ultimately fall to indi-
vidual households, emergency communications from federal agencies and broadcast meteorologists can
influence residents' perceptions of hurricane threats and are seen as trusted sources of information in emer-
gency situations (Lazrus et al., 2012). Because a majority of U.S. residents are concerned about COVID‐19
(Dunn et al., 2020), if the need for a large‐scale evacuation arises, evacuees may turn to these same trusted
sources for information on how best to stay safe while evacuating. Local, state, and federal officials who
develop evacuation orders and communicate them to the general public may therefore want to consider
whether their evacuation‐related communications should include assessments of the relative safety of poten-
tial destination counties with respect to COVID‐19 risk rather than allowing default evacuation patterns
based on past storms to prevail.

This research shows that the magnitude of the impact of evacuation on COVID‐19 caseloads is highly depen-
dent on conditions in destination counties. The degree to which counties are prepared to host, isolate, and
meet the needs of evacuees while also minimizing virus exposure through public health directives such as
social distancing andmask wearing will be a key determinant of the impact of evacuation on COVID‐19 case
numbers. Preparedness within destination counties is particularly important because, as this analysis shows,
destination counties will bear the brunt of the excess COVID‐19 cases that result from an evacuation event.
Destination counties must be aware of the influx of evacuees should it occur andmust be allocated the finan-
cial and human resources needed to ensure the safety of both their residents and the evacuees they are shel-
tering. Assurances that officials have the necessary resources and procedures in place to keep both the
evacuees and the local population safe during the evacuation period could increase the willingness of desti-
nation counties with low transmission rates to take in evacuees from origin counties with higher transmis-
sion rates.

The U.S. response to the COVID‐19 pandemic has varied widely from state to state and from county to
county. As a result of policy, communication, and ideological differences, compliance with mask wearing,
for example, has varied substantially even within a given state (Katz et al., 2020). This variability could
extend into county‐level hurricane preparedness measures, particularly given that guidance may be issued
at the state level while implementation of specific measures is left to counties, as is the case for Florida's cur-
rent coresponse guidance on hurricane evacuation and COVID‐19 (Florida Division of Emergency
Management, 2020).
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Figure 3. Optimization of evacuation plans. (a) The change in the number of evacuees to destination counties in
southeast United States in the optimized evacuation plan compared with the baseline evacuation scenario. Evacuation
was optimized for the setting in which transmission rates in destination counties increase by 10%. (b) Excess cases for
the baseline and optimized evacuation scenarios are compared for the origin and destination counties combined (left
column), only origin counties (middle column), and only destination counties (right column). Simulations were per-
formed for three settings: no increase (top row), 10% increase (middle row), and 20% increase (bottom row) of the
transmission rates in destination counties. Boxes and whiskers show the median, interquartile and 95% CIs. Asterisks
indicate that excess cases are significantly lower than the baseline scenario (Wilcoxon signed rank test, p < 10−5). Results
are obtained from 100 model simulations.
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Centuries of systemic racism in the United States have left Black, Native American, Latinx, and other
non‐White people with both higher exposure to and fewer resources to cope with environmental or
health‐related stressors compared with White populations (Bell & Ebisu, 2012; Singh et al., 2017). For exam-
ple, recent research suggests that federal financial aid after disasters is not equitably distributed among com-
munities and may even exacerbate income inequality (Emrich et al., 2020; Howell & Elliott, 2019).
Low‐income communities and communities of color consequently struggle to prepare in advance of and
recover in the wake of disasters (Baker, 2011; Cleetus et al., 2015).

Due to systemic health inequities, including higher exposure to air pollution (Bell & Ebisu, 2012) and higher
rates of underlying health conditions (Colen et al., 2018), COVID‐19 has also disproportionately affected
Black, Native American, and Latinx people in the United States (Larsen et al., 2020). These groups have
experienced higher infection rates, poorer health outcomes, and deeper declines in employment during
the pandemic (Larsen et al., 2020; Oppel et al., 2020; Wu et al., 2020). The additional risks faced because
of COVID‐19 and the financial costs associated with evacuation (Wu et al., 2013) could present additional
challenges for these segments of the population during hurricane evacuation or discourage them from evac-
uating altogether and thus further exacerbate inequitable health outcomes.

This study has used idealized scenarios to model hurricane evacuation patterns. These scenarios cannot fully
capture many household‐level choices that could alter levels of social contact—and therefore potential
COVID‐19 exposure—during the evacuation period. For example, previous studies of hurricane evacuations
along the U.S. Southeast and Gulf Coasts show that evacuees strongly and consistently prefer to stay with
friends and family over going to hotels/motels or public shelters (Bian et al., 2019; Lindell et al., 2011;
Wong et al., 2018;Wu et al., 2012, 2013; Yin et al., 2014). Levels of social contact and potential virus transmis-
sion would likely differ across accommodation types, which implies a level of complexity and spatial hetero-
geneity that is not possible to incorporate within the model used in this study. Similarly, this study does not
consider variable levels of exposure to COVID‐19 based on evacuation transportation mode. While evacuees
strongly prefer to travel in their own vehicles (Wong, Pel, et al., 2020), sharedmodes of transportation such as
buses or carpools would increase potential virus transmission and exposure. Recent research suggests that for
both transportation and shelter, the sharing economy—Internet‐based transactions via companies like
Airbnb that allow for peer‐to‐peer sharing of goods and services—could play a role in providing free or afford-
able resources to evacuees that would enable evacuees to maintain social distancing (Wong, Walker,
et al., 2020).

As a result of the ongoing economic and physical toll of the pandemic, household‐level decision making
regarding evacuationmay differ from that of past years. There are many sociodemographic factors associated
with decision making around evacuation including experience with past hurricanes, length of residence,
home ownership, age, income, race, employment status, level of social connectivity, social cues, perceived
levels of self‐efficacy and risk, and storm conditions (Collins et al., 2018; Demuth et al., 2016; Huang
et al., 2016; Lazo et al., 2015; Metaxa‐Kakavouli et al., 2018). While some of these factors (e.g., gender and
race) are unchanged from last year, others (e.g., employment status and income) may be either changed
or very much influenced by the current COVID‐19 pandemic. In contrast, the idealized scenarios adopted
for this study assume that people will choose destination counties and accommodation types that match past
choices.

The movement of people in and out of hurricane‐affected counties does not simply cease after all evacuees
have returned to their homes. For instance, communities affected by hurricanes often experience an influx of
workers who assist with rebuilding and recovery efforts (Fussell, 2009; Jordan, 2019; Theodore, 2017), which
could also influence infection rates in the affected counties long after the evacuation period. Postevacuation
movement patterns are beyond the scope of the present study.

Critically, hurricane evacuation is intended to save lives and prevent serious injuries to residents of
hurricane‐prone regions. While this study evaluates excess COVID‐19 cases resulting from evacuation, it
does not evaluate non‐COVID‐19 related risks to human health and lives in the event that people choose
to remain in their homes despite receiving evacuation orders—risks that could increase if people are afraid
to evacuate out of concern for contracting COVID‐19. Nor does it address evacuations of hospitals, nursing
homes, prisons, or other facilities. It will be critical for emergency managers to factor in these—and other—
complexities when developing plans (Wong & Shaheen, 2020).
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Finally, the results presented here are based on scenarios that, while plausible, are strictly hypothetical.
While the overall notion that distributing evacuees to destination counties with low transmission rates mini-
mizes excess cases should theoretically apply to geographies outside Florida or the United States, additional
model simulations of such scenarios should be generated. Moreover, while this studymodels evacuation spe-
cifically from a hurricane, the same notion should apply to evacuations from other geophysical hazards such
as wildfires and floods, though evacuations from such hazards tend involve fewer people than hurricane
evacuations.

The data presented here show that while a large‐scale hurricane evacuation would increase the total number
of COVID‐19 cases in the United States, directing evacuees to plausible destination counties with low
COVID‐19 transmission rates would minimize the excess cases induced by the evacuation event. These
results have far‐reaching implications for immediate emergency management and communications prac-
tices, as well as long‐term disaster preparedness.

Faced with the prospect of tens of thousands of additional cases arising from a hurricane evacuation, states
and counties at both ends of evacuation routes must be allocated the necessary financial and human
resources required to meet evacuees' needs while also ensuring community safety and health through mea-
sures intended to reduce COVID‐19 transmission rates. Further, resource distribution must prioritize the
nation's most vulnerable groups.
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