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Supplementary Figures

1.1 AML-sim: Differential abundance of rare cell populations

AML−sim: performance comparisons

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

ROC curve

CN, 5%

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

ROC curve

CN, 1%

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

ROC curve

CN, 0.1%

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

ROC curve

CBF, 5%

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

ROC curve

CBF, 1%

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

ROC curve

CBF, 0.1%

method
diffcyt_DA_edgeR
diffcyt_DA_voom
diffcyt_DA_GLMM
Citrus
CellCnn
cydar

AML−sim: performance comparisons

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

False discovery rate

Tr
ue

 p
os

iti
ve

 r
at

e

TPR vs. FDR

CN, 5%

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

False discovery rate

Tr
ue

 p
os

iti
ve

 r
at

e

TPR vs. FDR

CN, 1%

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

False discovery rate

Tr
ue

 p
os

iti
ve

 r
at

e

TPR vs. FDR

CN, 0.1%

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

False discovery rate

Tr
ue

 p
os

iti
ve

 r
at

e

TPR vs. FDR

CBF, 5%

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

False discovery rate

Tr
ue

 p
os

iti
ve

 r
at

e

TPR vs. FDR

CBF, 1%

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

False discovery rate

Tr
ue

 p
os

iti
ve

 r
at

e

TPR vs. FDR

CBF, 0.1%

FDR threshold
0.01
0.05
0.1

method
diffcyt_DA_edgeR
diffcyt_DA_voom
diffcyt_DA_GLMM
Citrus
CellCnn
cydar

Supplementary Figure 1. Performance metrics: AML-sim, all methods. Results of main
performance evaluations for diffcyt methods and comparisons with Citrus, CellCnn, and cydar; testing
for differential abundance of rare cell populations. Panels display results for condition CN vs. healthy (rows
1 and 3) and condition CBF vs. healthy (rows 2 and 4), at three different thresholds of abundance for the
rare cell population (5%, 1%, and 0.1%; by column). Panels show (i) receiver operating characteristic (ROC)
curves, and (ii) true positive rate (TPR) vs. false discovery rate (FDR) curves (also showing observed TPR
and FDR at FDR cutoffs 1%, 5%, and 10%). See section 3.4 for additional notes on the evaluation metrics
for each method.
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AML−sim, null simulations: p−value distributions
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Supplementary Figure 2. Null simulation p-values: AML-sim, diffcyt methods. P-value
distributions (densities) for diffcyt methods, 3 replicated null simulations; testing for differential abundance
of rare cell populations. Panels display results for three different thresholds of abundance for the rare cell
population (5%, 1%, and 0.1%; by column), for each method (by row and color). P-value distributions that
are approximately uniform across replicates are consistent with data containing no true differential signal.
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Supplementary Figure 3. Heatmaps: AML-sim, diffcyt methods. Heatmaps showing (i) phenotypes
(median arcsinh-transformed expression profiles for cell type markers) (left panel) and (ii) relative cluster
abundances (proportion of cells per cluster, by sample); testing for differential abundance of rare cell
populations. Vertical annotation highlights detected significant clusters at 10% FDR (red) and clusters
containing >50% true spiked-in cells (black). Color scale for expression is normalized to 1st and 99th
percentiles across all clusters and cell type markers. Clusters (rows) are grouped using hierarchical clustering
with Euclidean distance and average linkage. Each heatmap shows only the top 20 clusters as ranked by
significance levels (out of 400 clusters total), for easier visibility of the top detected clusters. Panels show
results for condition CN vs. healthy and condition CBF vs. healthy (arranged in rows), at three different
thresholds of abundance for the rare cell population (5%, 1%, and 0.1%; arranged in columns), for each
method (arranged by group).
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AML−sim: clustering resolution
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Supplementary Figure 4. Performance metrics: AML-sim, diffcyt methods, varying clustering
resolution. Results of performance evaluations for diffcytmethods, varying clustering resolution; testing for
differential abundance of rare cell populations. Plots show partial area under receiver operating characteristic
(ROC) curves (pAUC) for false positive rates (FPR) < 0.2, for selected numbers of clusters. Panels display
pAUC plots for condition CN vs. healthy (row 1) and condition CBF vs. healthy (row 2), at three different
thresholds of abundance for the rare cell population (5%, 1%, and 0.1%; by column).

AML−sim, diffcyt methods: clustering performance
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Supplementary Figure 5. Clustering performance: AML-sim, diffcyt methods. Clustering
performance measures (precision, cumulative recall) for all clusters containing any true spiked-in cells
(recall > 0); testing for differential abundance of rare cell populations. Clusters (horizontal axis) are
ordered by recall. Note that the clustering step is the same for all diffcyt methods (diffcyt-DA-edgeR,
diffcyt-DA-voom, and diffcyt-DA-GLMM). Panels show results for condition CN vs. healthy (row 1) and
condition CBF vs. healthy (row 2), at three different thresholds of abundance for the rare cell population
(5%, 1%, and 0.1%; by column).
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AML−sim: diffcyt−DA−voom, random effects
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Supplementary Figure 6. Performance metrics: AML-sim, diffcyt-DA-voom, random effects
for patient IDs. Results of performance evaluations for diffcyt-DA-voom, main results vs. using random
effects instead of fixed effects for patient IDs (using limma duplicateCorrelation methodology); testing for
differential abundance of rare cell populations. Panels display receiver operating characteristic (ROC) curves
for condition CN vs. healthy (row 1) and condition CBF vs. healthy (row 2), at three different thresholds of
abundance for the rare cell population (5%, 1%, and 0.1%; by column).

AML−sim: meta−clustering
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Supplementary Figure 7. Performance metrics: AML-sim, diffcyt methods, using FlowSOM
meta-clustering. Results of performance evaluations for diffcyt methods, using 40 meta-clusters in
FlowSOM clustering algorithm; testing for differential abundance of rare cell populations. Panels display
true positive rate (TPR) vs. false discovery rate (FDR) curves (also showing observed TPR and FDR at
FDR cutoffs 1%, 5%, and 10%) for condition CN vs. healthy (row 1) and condition CBF vs. healthy (row 2),
at three different thresholds of abundance for the rare cell population (5%, 1%, and 0.1%; by column).
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AML−sim: random seeds for clustering
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Supplementary Figure 8. Performance metrics: AML-sim, diffcyt-DA-edgeR, varying random
seeds for clustering. Results of performance evaluations for diffcyt-DA-edgeR, main results and 3
additional replicates using varying random seeds for clustering step; testing for differential abundance of rare
cell populations. Panels display receiver operating characteristic (ROC) curves for condition CN vs. healthy
(row 1) and condition CBF vs. healthy (row 2), at three different thresholds of abundance for the rare cell
population (5%, 1%, and 0.1%; by column). Results for methods diffcyt-DA-voom and diffcyt-DA-GLMM

are approximately similar.

AML−sim: random seeds for data generation
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Supplementary Figure 9. Performance metrics: AML-sim, diffcyt-DA-edgeR, varying random
seeds for data generation. Results of performance evaluations for diffcyt-DA-edgeR, main results and 3
additional replicates using varying random seeds for data generation; testing for differential abundance of rare
cell populations. Panels display receiver operating characteristic (ROC) curves for condition CN vs. healthy
(row 1) and condition CBF vs. healthy (row 2), at three different thresholds of abundance for the rare cell
population (5%, 1%, and 0.1%; by column). Results for methods diffcyt-DA-voom and diffcyt-DA-GLMM

are approximately similar.
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AML−sim: 'less distinct' benchmark data
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Supplementary Figure 10. Performance metrics: AML-sim, diffcyt-DA-edgeR, ‘less distinct’
benchmark data. Results of performance evaluations for diffcyt-DA-edgeR, main results and 50% and
75% ‘less distinct’ benchmark datasets; testing for differential abundance of rare cell populations. Panels
display receiver operating characteristic (ROC) curves for condition CN vs. healthy (row 1) and condition
CBF vs. healthy (row 2), at three different thresholds of abundance for the rare cell population (5%, 1%, and
0.1%; by column). Results for methods diffcyt-DA-voom and diffcyt-DA-GLMM are approximately similar.

AML−sim: smaller sample sizes: 2 vs. 2

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

False discovery rate

Tr
ue

 p
os

iti
ve

 r
at

e

TPR vs. FDR

CN, 5%

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

False discovery rate

Tr
ue

 p
os

iti
ve

 r
at

e

TPR vs. FDR

CN, 1%

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

False discovery rate

Tr
ue

 p
os

iti
ve

 r
at

e

TPR vs. FDR

CN, 0.1%

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

False discovery rate

Tr
ue

 p
os

iti
ve

 r
at

e

TPR vs. FDR

CBF, 5%

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

False discovery rate

Tr
ue

 p
os

iti
ve

 r
at

e

TPR vs. FDR

CBF, 1%

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

False discovery rate

Tr
ue

 p
os

iti
ve

 r
at

e

TPR vs. FDR

CBF, 0.1%

FDR threshold
0.01
0.05
0.1

method
diffcyt_DA_edgeR
diffcyt_DA_voom
diffcyt_DA_GLMM

Supplementary Figure 11. Performance metrics: AML-sim, diffcyt methods, smaller sample
sizes. Results of performance evaluations for diffcyt methods, using a subset of the full number of samples
(2 vs. 2 samples); testing for differential abundance of rare cell populations. The full dataset contains 5 vs. 5
samples. Panels display true positive rate (TPR) vs. false discovery rate (FDR) curves (also showing observed
TPR and FDR at FDR cutoffs 1%, 5%, and 10%) for condition CN vs. healthy (row 1) and condition CBF vs.
healthy (row 2), at three different thresholds of abundance for the rare cell population (5%, 1%, and 0.1%;
by column).
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Supplementary Figure 12. Runtimes: AML-sim, all methods, main simulation. Runtimes for all
methods; testing for differential abundance of cell populations. Runtimes are shown for condition CN vs.
healthy at one threshold of abundance for the rare cell population (1%). Text labels indicate runtimes in
seconds. All methods were run on a 2014 MacBook Air laptop, 1.7 GHz processor, 8 GB memory, using a
single processor core. For Citrus, subsampling was used to select a maximum of 5,000 cells per sample; all
other methods were run without subsampling. See Supplementary Note 2 for more details on parameters.
Runtimes for the other condition (CBF vs. healthy) and the remaining thresholds of abundance for the rare
cell population (5% and 0.1%) were approximately similar.
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1.2 BCR-XL-sim: Differential states within cell populations
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Supplementary Figure 13. Null simulation p-values: BCR-XL-sim, diffcyt methods. P-value
distributions (densities) for diffcyt methods, 3 replicated null simulations; testing for differential states
within cell populations. P-value distributions that are approximately uniform across replicates are consistent
with data containing no true differential signal.
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Supplementary Figure 14. Heatmaps: BCR-XL-sim, diffcyt methods. Heatmaps showing
(i) phenotypes (median arcsinh-transformed expression profiles for cell type markers) (left panel) and
(ii) expression of signaling marker pS6 by sample (right panel) for each cluster; testing for differential states
within cell populations. Vertical annotation highlights detected significant cluster-marker combinations at
10% FDR (red) and clusters containing >50% true spiked-in cells (black). Color scale for expression of cell
type markers is normalized to 1st and 99th percentiles across all clusters and markers. Clusters (rows) are
grouped using hierarchical clustering with Euclidean distance and average linkage. Each heatmap shows only
the top 20 clusters as ranked by significance levels (for signaling marker pS6; out of 100 clusters total), for
easier visibility of the top detected clusters. Panels show results separately for each method.
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Supplementary Figure 16. Treating all markers as ‘cell type’ and testing with DA (instead of
DS) methods: BCR-XL-sim; diffcyt methods. (Left:) Results of performance evaluations for diffcyt
methods, treating all markers as ‘cell type’ (i.e. used for clustering); testing for differential abundance of
cell populations. Panels show (i) receiver operating characteristic (ROC) curves, and (ii) true positive rate
(TPR) vs. false discovery rate (FDR) curves (also showing observed TPR and FDR at FDR cutoffs 1%, 5%,
and 10%). (Right:) Heatmap showing (i) phenotypes (median arcsinh-transformed expression profiles for all
markers), (ii) relative cluster abundances (proportion of cells per cluster, by sample), and (iii) expression of
signaling marker pS6 by sample for each cluster. Vertical annotation highlights detected significant clusters at
10% FDR (red) and clusters containing >50% true spiked-in cells (black). Heatmap is shown for one method
only (diffcyt-DA-edgeR); heatmaps for the other methods are similar. The group of 6 significant clusters
(clusters 89, 90, 97, 98, 99, 100) matches the expected phenotype from the main results (B cells identified by
high expression of CD20, with either high or low expression of pS6). However, compared to the main results
(heatmaps in Supplementary Figure 16), these results are more difficult to interpret, since cluster phenotypes
(expression profiles) may mix elements from canonical ‘cell type’ and ‘cell state’ phenotypes.
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Supplementary Figure 17. Performance metrics: BCR-XL-sim, diffcyt-DS-limma and diffcyt-
DS-LMM, alternative methodologies for patient IDs. Results of performance evaluations for
(i) diffcyt-DS-limma, main results vs. using random effects instead of fixed effects for patient IDs (using
limma duplicateCorrelation methodology) (left panel); and (ii) diffcyt-DS-LMM, main results vs. using
fixed effects instead of random effects for patient IDs (right panel); testing for differential states within cell
populations. Results are displayed using receiver operating characteristic (ROC) curves.
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Supplementary Figure 18. Performance metrics: BCR-XL-sim, diffcyt methods, using
FlowSOM meta-clustering. Results of performance evaluations for diffcyt methods, using 20 meta-
clusters in FlowSOM clustering algorithm; testing for differential states within cell populations. Results are
displayed using true positive rate (TPR) vs. false discovery rate (FDR) curves (also showing observed TPR
and FDR at FDR cutoffs 1%, 5%, and 10%).
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Supplementary Figure 19. Performance metrics: BCR-XL-sim, diffcyt methods, varying
random seeds for clustering. Results of performance evaluations for diffcyt-DS-limma, main results
and 3 additional replicates using varying random seeds for clustering step; testing for differential states within
cell populations. Results are displayed using receiver operating characteristic (ROC) curves. Results for
method diffcyt-DS-LMM are approximately similar.
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Supplementary Figure 20. Performance metrics: BCR-XL-sim, diffcyt methods, varying
random seeds for data generation. Results of performance evaluations for diffcyt-DS-limma, main
results and 3 additional replicates using varying random seeds for data generation; testing for differential
states within cell populations. Results are displayed using receiver operating characteristic (ROC) curves.
Results for method diffcyt-DS-LMM are approximately similar.
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Supplementary Figure 21. Performance metrics: BCR-XL-sim, diffcyt methods, ‘less distinct’
benchmark data. Results of performance evaluations for diffcyt-DS-limma, main results and 50% and
75% ‘less distinct’ benchmark datasets; testing for differential states within cell populations. Results are
displayed using receiver operating characteristic (ROC) curves. Results for method diffcyt-DS-LMM are
approximately similar.
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BCR−XL−sim: smaller sample sizes: 4 vs. 4

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

ROC curve

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

False discovery rate

Tr
ue

 p
os

iti
ve

 r
at

e

TPR vs. FDR FDR threshold

0.01

0.05

0.1

method

diffcyt_DS_limma

diffcyt_DS_LMM

BCR−XL−sim: smaller sample sizes: 2 vs. 2
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Supplementary Figure 22. Performance metrics: BCR-XL-sim, diffcyt methods, smaller
sample sizes. Results of performance evaluations for diffcyt methods, using subsets of the full number
of samples; testing for differential states within cell populations. 4 vs. 4 samples (top) and 2 vs. 2 samples
(bottom); the full dataset contains 8 vs. 8 samples. Panels show (i) receiver operating characteristic (ROC)
curves, and (ii) true positive rate (TPR) vs. false discovery rate (FDR) curves (also showing observed TPR
and FDR at FDR cutoffs 1%, 5%, and 10%).
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Supplementary Figure 23. Runtimes: BCR-XL-sim, all methods, main simulation. Runtimes
for all methods; testing for differential states within cell populations. Text labels indicate runtimes in seconds.
All methods were run on a 2014 MacBook Air laptop, 1.7 GHz processor, 8 GB memory, using a single
processor core. For Citrus, subsampling was used to select a maximum of 5,000 cells per sample; all other
methods were run without subsampling. cydar was run using only a subset of markers (‘cell type’ markers
excluding CD45, plus pS6). See Supplementary Note 2 for more details on parameters.
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1.3 Anti-PD-1: Re-analysis of experimental data
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Supplementary Figure 24. Sensitivity to random seeds: Anti-PD-1, diffcyt-DA-edgeR. Results
for 5 additional runs using different random seeds (for re-analysis of experimental dataset Anti-PD-1 using
diffcyt-DA-edgeR; testing for differential abundance of cell populations between baseline samples from
responder and non-responder groups of patients). Between 0 and 4 significant clusters are detected per
run. Clusters matching the phenotype of interest are detected in 4 out of 5 runs (additional possible false
positives are represented by cluster 201 for random seed 3 and cluster 260 for random seed 5; see previous
figure and main text). Heatmaps show (i) phenotype (median arcsinh-transformed marker expression profiles)
of significant detected clusters at 10% false discovery rate (FDR), compared to all cells (left panel); and
(ii) relative cluster abundances (proportion of cells per cluster, by sample) (right panel) for the detected
clusters. Heatmap rows (clusters) are grouped by hierarchical clustering with Euclidean distance and average
linkage. NR = non-responders, R = responders.
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1.4 BCR-XL: Re-analysis of experimental data
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Supplementary Figure 25. Main results: BCR-XL, diffcyt-DS-limma. Results for re-analysis of
experimental dataset BCR-XL using diffcyt-DS-limma; testing for differential states within cell populations.
Heatmap shows (i) proportions of cells per cluster matching to each true population (left panel); and
(ii) adjusted p-values from the differential tests for each cell state marker for each cluster (right panel). All
clusters (total 100 clusters) and cell state markers (14 cell state markers) are shown. Rows (clusters) are
grouped by hierarchical clustering with Euclidean distance and average linkage (on the proportions). True
(reference) cell population labels are sourced from [1] (see Supplementary Note 1).
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Supplementary Note 1:

Benchmark datasets

2.1 AML-sim

2.1.1 Summary

The ‘AML-sim’ dataset is a semi-simulated dataset designed to evaluate the performance of
methods for detecting differential abundance of a single rare cell population.

The dataset consists of several samples of bone marrow mononuclear cells (BMMCs)
from healthy individuals, with small percentages of acute myeloid leukemia (AML) blast
cells computationally ‘spiked-in’ at various thresholds of abundance. This simulates the
phenotype of minimal residual disease (MRD) in AML patients. The question of interest is
to detect the differentially abundant rare population of AML blast cells, even at extremely
small thresholds.

The data generation concept and strategy are based on a similar benchmark dataset
created by [2], who used their dataset to demonstrate the performance of CellCnn. The
original data is sourced from [3], and is available from Cytobank at the following links. Gating
plots for the blast cells are also shown in [3], Supplemental Data S3B.

• all cells (also contains gating scheme for CD34+CD45mid cells, i.e. blasts): https://
community.cytobank.org/cytobank/experiments/46098/illustrations/121588

• blasts (repository cloned from the one for ‘all cells’ above, using the gating scheme for
CD34+CD45mid cells; this allows .fcs files for the subset to be exported): https://
community.cytobank.org/cytobank/experiments/63534/illustrations/125318

2.1.2 Details on data generation strategy

The original dataset [3] consists of 5 healthy samples and 16 AML samples. Several of the
AML samples have been classified into two subtypes [2]: ‘cytogenetically normal’ or CN
(patients SJ10, SJ12, and SJ13), and ‘core-binding factor translocation’ or CBF (patients
SJ1, SJ2, SJ3, SJ4, and SJ5).

For the AML-sim dataset, we use all 5 healthy samples (labeled H1–H5), one CN
sample, and one CBF sample. The CN and CBF samples correspond to individuals SJ10
(CN) and SJ4 (CBF) in the meta-data spreadsheets. (Note that the .fcs filenames do not
correspond to the correct sample names from the meta-data spreadsheet; see comments in
data preparation script prepare data AML sim main.R at https://github.com/lmweber/
diffcyt-evaluations for more details).

To generate the AML-sim dataset, we split each healthy sample (H1–H5) into 3 equal
parts. The first part is kept as the ‘healthy’ sample. In the second part, we computationally
‘spike in’ small percentages of randomly selected blast cells from the CN sample (SJ10).
Similarly, in the third part, we spike in small percentages of randomly selected blast cells
from the CBF sample (SJ4). The blast cells are spiked-in at three different thresholds (5%,
1%, and 0.1%) of the number of healthy cells for each sample, to create several datasets with
varying levels of ‘rareness’ for the population of interest. Different random seeds are used for
splitting each healthy sample and for selecting blast cells for each sample and threshold, to
ensure that the sets of cells are not identical across replicates. The objective is then to detect
the differentially abundant population of CN blasts in a comparison of the 5 healthy samples
versus 5 ‘healthy + CN’ samples at each threshold; and similarly for the CBF blasts.
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Supplementary Table 1 shows the numbers of cells for each healthy sample (H1–H5)
and threshold, and Supplementary Table 2 lists the protein markers in this dataset. There
are 31 protein markers in total, including 16 surface markers used to define cell types, and
15 intracellular markers used to characterize cell states. For the AML-sim dataset, we only
require the surface markers, since we are only interested in detecting differential abundance
of cell populations (i.e. cell types). Supplementary Figure 26 (left panel) displays marker
expression profiles (distributions of arcsinh-transformed expression values for each protein
marker) for blast cells in each condition: healthy, CN, and CBF.

Sample Total no. cells 5% 1% 0.1%

H1 15,394 257 52 6
H2 26,633 444 89 9
H3 21,246 355 71 8
H4 41,848 698 140 14
H5 52,472 875 175 18

Supplementary Table 1. AML-sim dataset: number of cells. For each healthy sample (H1–H5), the
columns show the total number of cells, and the numbers of ‘spiked-in’ cells randomly selected from either
the CN or CBF sample to create the simulated samples. The healthy samples are split into 3 equal parts;
CN or CBF cells are then spiked-in at several thresholds (5%, 1%, or 0.1%) of the number of cells in the
corresponding ‘healthy’ sample (which consists of one third of the total cells for that sample); for example,
H1: 5% ∗ 15394/3 = 257 cells.

Protein marker class Protein marker names

Cell type CD117, CD11b, CD123, CD15, CD19, CD3, CD33, CD34, CD38, CD41,
CD44, CD45, CD47, CD64, CD7, HLA-DR

Cell state cCaspase3, p4EBP1, pAKT, pAMPK, pc-Cbl, pCREB, pErk1-2, pP38,
pPLCg2, pRb, pS6, pSTAT1, pSTAT3, pSTAT5, pZap70-Syk

Supplementary Table 2. AML-sim dataset: protein markers. Summary of protein marker classes
(cell type or cell state) and names in the AML-sim dataset. There are 31 protein markers in this dataset,
including 16 surface markers used to define cell types, and 15 intracellular markers representing cell states.
For the AML-sim dataset, we require only the surface markers.

2.1.3 Randomized benchmark datasets

Several steps in the data generation strategy described above depend on random sampling of
cells. To investigate the sensitivity to this random sampling, we generated several additional
replicates of the AML-sim dataset using different random seeds.

The modified random seeds affected the random sampling for (i) splitting each healthy
sample (H1–H5) into three equal parts; and (ii) selecting subsets of blast cells from the
CN and CBF samples at each spike-in threshold (5%, 1%, and 0.1%). We generated three
randomized replicates of the AML-sim dataset using this strategy.

2.1.4 ‘Less distinct’ populations of interest

In the main AML-sim dataset, the rare populations of CN and CBF blast cells have marker
expression profiles that are clearly distinct from healthy blasts (Supplementary Figure 26,
left panel). This arguably presents a relatively ‘easy’ task for the methods used to test for
differential abundance.
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Supplementary Figure 26. AML-sim dataset: marker distributions for blasts cells, main
simulation and ‘less distinct’ simulations. Distributions of arcsinh-transformed expression values
for each protein marker (marker expression profiles) for blast cells, by condition, for the main simulation (left
panel) and the 50% and 75% ‘less distinct’ simulations (middle and right panels). Healthy samples (H1–H5)
are combined into a single curve.

In order to further evaluate the sensitivity of the methods, we generated additional
simulations where the CN and CBF blast cell populations have been modified to be ‘less
distinct’ from the healthy blasts, according to their marker expression profiles. This increases
the level of difficulty for the differential testing methods.

We created ‘less distinct’ AML blast cell populations (CN and CBF) by scaling the
marker expression profiles of these populations, reducing the differences in both median and
standard deviation of the arcsinh-transformed expression profiles by certain proportions,
compared to healthy blasts. We created two new simulated datasets: reducing the differences
in median and standard deviation by 50% and 75%. (In other words, for each cell in the
AML blast cell population of interest, 50% or 75% of the difference in medians between
AML blasts and healthy blasts was subtracted, followed by dividing the values to reduce the
difference in standard deviations by 50% or 75%). Supplementary Figure 26 (middle and
right panels) displays the resulting marker expression profiles.

2.1.5 Null simulations

In order to investigate the error rates of the methods for testing for differential abundance,
we also generated ‘null’ simulations based on the AML-sim dataset. The null simulations do
not include any true ‘spiked-in’ cells; therefore, any detected signals (significant differentially
abundant clusters) will be false positives. We generated the null simulations by splitting each
healthy sample (H1–H5) into two equal parts, and then tested for differential abundance
of cell populations between these two parts. This was repeated three times using different
random seeds, to generate three replicates.
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2.2 BCR-XL-sim

2.2.1 Summary

The ‘BCR-XL-sim’ dataset is a semi-simulated dataset designed to evaluate the performance
of methods for detecting differential states within cell populations.

The dataset consists of two groups of paired samples of healthy peripheral blood
mononuclear cells (PBMCs), where one group contains a computationally ‘spiked-in’
population of B cells from matched samples stimulated with B cell receptor / Fc receptor
cross-linker (BCR-XL). The stimulated cells are from the same individual as the healthy
cells for each pair, preserving the paired data structure. The stimulated B cells contain a
known signal of elevated expression of several signaling markers; the strongest signal is for
phosphorylated ribosomal protein S6 (pS6), as previously described by [4] and [5]. The aim
is to detect differential expression of the signaling state marker pS6 in B cells between the
two groups.

The original dataset is from [5], and has previously been used for benchmarking
evaluations by [4] (who used it to demonstrate the performance of Citrus) and [1].

• The original data is available from Cytobank: https://community.cytobank.org/

cytobank/experiments/15713/download_files

• Additional information is available from the Citrus wiki page: https://github.com/
nolanlab/citrus/wiki/PBMC-Example-1

Cell population labels (required to identify B cells) are reproduced from [1], where they
were generated using a strategy of expert-guided manual merging of automatically generated
clusters from the FlowSOM algorithm.

2.2.2 Details on data generation strategy

The original dataset [5] consisted of samples of healthy PBMCs from 8 individuals, where
samples from each individual were stimulated with a number of different signaling inhibitors
in order to investigate properties of cell signaling networks. For the BCR-XL-sim dataset, we
use samples from the unstimulated reference condition and samples stimulated with B cell
receptor / Fc receptor cross-linker (BCR-XL). Therefore, we have 16 original samples, in an
8 vs. 8 paired design.

As previously described [1, 4, 5], this dataset contains strong differential expression
signals for several signaling state markers in several cell populations. In particular, one of
the strongest effects is differential expression of phosphorylated S6 (pS6) in B cells (see [1],
Figure 27).

We construct the ‘BCR-XL-sim’ benchmark dataset as follows. First, we select the
unstimulated reference sample from each pair, and randomly split this into two halves.
Then, in one half, we replace the B cells with an equivalent number of B cells from the
corresponding paired sample from the BCR-XL stimulated condition. This introduces a
differential expression signal in B cells for several signaling state markers, including pS6.
Methods are then evaluated by their ability to detect differential expression of pS6 in B cells
between the two conditions.

Supplementary Table 3 summarizes the number of cells in this dataset, and
Supplementary Table 4 lists the protein markers. There are 24 protein markers in total,
including 10 surface markers (9 of which are used to define cell types), and 14 intracellular
markers used to characterize cell states. Note that CD45 is excluded from the set of surface
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markers used to define cell types by clustering, since almost all cells in this dataset have
high expression of CD45; hence CD45 is not informative for distinguishing cell populations.
Supplementary Figure 27 (left panel) displays the marker expression profiles (distributions of
arcsinh-transformed expression values for each protein marker) in each condition.

Individual Total cells B cells

1 2,739 184
2 16,725 686
3 9,434 1,091
4 6,906 422
5 11,962 830
6 11,038 885
7 15,974 1,139
8 13,670 821

Supplementary Table 3. BCR-XL-sim dataset: number of cells. For each individual, the columns
show the total number of cells and the number of B cells in the unstimulated (reference) sample (B cells are
also included in the total). For the BCR-XL-sim dataset, each unstimulated sample is split into two equal
parts, and the B cells in one part are replaced with an equivalent number of B cells from the corresponding
paired sample from the stimulated (BCR-XL) condition.

Protein marker class Protein marker names

Cell type CD123, CD14, CD20, CD3, CD33, CD4, CD45, CD7, HLA-DR, IgM
Cell state pAkt, pBtk, pErk, pLat, pNFkB, pp38, pPlcg2, pS6, pSHP2, pSlp76,

pStat1, pStat3, pStat5, pZap70

Supplementary Table 4. BCR-XL-sim dataset: protein markers. Summary of protein marker
classes (cell type or cell state) and names in the BCR-XL-sim dataset. There are 24 protein markers in
this dataset, including 10 surface markers (9 of which are used to define cell types), and 14 intracellular
markers representing cell states. Note that CD45 is excluded from the set of surface markers used to define
cell types by clustering, since almost all cells in this dataset have high expression of CD45; hence CD45 is not
informative for distinguishing cell populations.

2.2.3 Randomized benchmark datasets

Several steps in the data generation strategy described above depend on random sampling of
cells. To investigate the sensitivity to this random sampling, we generated several additional
replicates of the BCR-XL-sim dataset using different random seeds.

The modified random seeds affected the random sampling for (i) splitting each
unstimulated (reference) sample into two equal parts; and (ii) selecting B cells from the
stimulated (BCR-XL) condition to use as ‘spiked-in’ cells. We generated three randomized
replicates of the BCR-XL-sim dataset using this strategy.

2.2.4 ‘Less distinct’ populations of interest

In the main BCR-XL-sim dataset, the spiked-in populations of stimulated B cells have marker
expression profiles that are clearly distinct from healthy B cells (Supplementary Figure 27,
left panel). This arguably presents a relatively ‘easy’ task for the methods used to test for
differential states within cell populations.

In order to further evaluate the sensitivity of the methods, we generated additional
simulations where the stimulated B cells have been modified to be ‘less distinct’ from the
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Supplementary Figure 27. BCR-XL-sim dataset: marker distributions for B cells, main
simulation and ‘less distinct’ simulations. Distributions of arcsinh-transformed expression values
for each protein marker (marker expression profiles) for B cells, by condition, for the main simulation and
the 50% and 75% ‘less distinct’ simulations.

healthy B cells, according to their marker expression profiles. This increases the level of
difficulty for the differential testing methods.

We created ‘less distinct’ stimulated B cell populations by scaling the marker expression
profiles of these populations, reducing the differences in both median and standard deviation
of the arcsinh-transformed expression profiles by certain proportions, compared to healthy
B cells. We created two new simulated datasets: reducing the differences in median and
standard deviation by 50% and 75%. (In other words, for each cell in the stimulated B cell
population, 50% or 75% of the difference in medians between stimulated and healthy B cells
was subtracted, followed by dividing the values to reduce the difference in standard deviations
by 50% or 75%). Supplementary Figure 27 (middle and right panels) displays the resulting
marker expression profiles.

2.2.5 Null simulations

In order to investigate the error rates of the methods for testing for differential states within
cell populations, we also generated ‘null’ simulations based on the BCR-XL-sim dataset.
The null simulations do not include any true ‘spiked-in’ cells; therefore, any detected signals
(significant differential expression of cell state markers within clusters) will be false positives.
We generated the null simulations by splitting each unstimulated (reference) sample into
two equal parts, and then tested for differential states within cell populations between these
two parts. This was repeated three times using different random seeds, to generate three
replicates.
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2.3 Anti-PD-1

The ‘Anti-PD-1’ dataset is an experimental dataset from a recent study using mass cytometry
to characterize immune cell subsets in peripheral blood from melanoma skin cancer patients
treated with anti-PD-1 immunotherapy [6].

One of the key results of this study was that the frequency of CD14+ CD16− HLA-DRhi

monocytes in baseline samples (taken from patients prior to treatment) was a strong predictor
of survival in response to immunotherapy treatment. In particular, analysis using CellCnn [2]
detected a small subpopulation of CD14+ CD33+ HLA-DRhi ICAM-1+ CD64+ CD141+

CD86+ CD11c+ CD38+ PD-L1+ CD11b+ monocytes within this population; the frequency
of this subpopulation in baseline samples was strongly associated with responder status
following immunotherapy treatment. (See section ‘Identification of a monocyte signature
using CellCnn’, referring to results for ‘myeloid panel’, in [6]).

Here, we re-analyzed this dataset using the diffcyt methods, in order to test whether
the diffcyt methods could reproduce this known result from a published experimental
dataset. Note that this dataset contains a strong batch effect, due to sample acquisition on
two different days [6].

Since this is an experimental dataset, there is no known ‘truth’ that can be used to
calculate statistical performance metrics (i.e. unlike the simulated datasets). Instead, the
results are evaluated qualitatively, using visualizations to determine whether the diffcyt

methods detect differentially abundant clusters corresponding to the previously validated
differentially abundant subpopulation of monocytes.

2.4 BCR-XL

The ‘BCR-XL’ dataset refers to the original experimental data from [5], which was also
used to construct the BCR-XL-sim semi-simulated dataset described above (see section
‘BCR-XL-sim’ for more details about the original dataset).

As described above, the BCR-XL dataset contains known strong differential signals
for several signaling state markers in several cell populations; one of the strongest signals is
for differential expression of pS6 in B cells. Here, we applied the diffcyt methods directly
to the unmodified original dataset (BCR-XL stimulation condition only), in order to test
whether the diffcyt methods could detect the known strong differential signals.

As for the Anti-PD-1 dataset, this is an experimental dataset, which does not contain a
known ‘truth’ that can be used to calculate statistical performance metrics. Therefore, the
results are evaluated qualitatively using visualizations. (However, reference cell population
labels are available from [1], as described above for the BCR-XL-sim dataset; these can be
used to generate more informative visualizations.)

2.5 Data and code availability

Data files for all benchmark datasets are available in .fcs format from FlowRepository
(repository ID: FR-FCM-ZYL8) at http://flowrepository.org/id/FR-FCM-ZYL8. The
benchmark datasets can also be accessed in SummarizedExperiment and flowSet

Bioconductor object formats through the HDCytoData Bioconductor package, available at
http://bioconductor.org/packages/HDCytoData.

R code scripts to reproduce all data preparation and simulation steps and generate all
figures are available from GitHub at https://github.com/lmweber/diffcyt-evaluations.
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Supplementary Note 2:

Comparisons with existing methods

3.1 Citrus

Overview

Citrus [4] identifies cell populations associated with a clinical endpoint such as disease
status by: (i) generating a hierarchy of clusters and calculating feature values such as
cluster abundance or median functional marker expression for every cluster in the hierarchy,
and (ii) fitting a regularized classification or regression model, which automatically selects
‘stratifying’ features associated with the endpoint of interest.

The Citrus results consist of a list of ‘differential features’ at the cluster level, e.g.
clusters that have been detected as differentially abundant, or clusters with differential
expression of functional markers. To compare performance with other methods, we require
unique results at the cell level; we achieve this by assigning the cluster-level differential status
to all cells within each detected cluster. Since Citrus does not return any continuous-valued
scores or p-values, it is not possible to rank clusters (or cells) by their differential evidence:
clusters (or cells) are either selected as differential or not. Therefore, receiver operating
characteristic (ROC) curves and true positive rate (TPR) vs. false discovery rate (FDR)
curves consist of straight-line segments, and it is not possible to calculate the observed TPR,
FDR, and false positive rate (FPR) at specific FDR cutoffs.

Availability

Citrus is available as an R package for download from GitHub (https://github.com/
nolanlab/citrus/). Installation instructions are provided on the Citrus ‘wiki’, accessible
via the GitHub page. (However, installation on our Mac system required several additional
steps: customized compiler setup using ‘clang4’ and ‘libomp’, customization of R ‘Makevars’,
and installation of packages from source. These steps are partially documented on the wiki
page. Alternatively, Citrus can be installed more easily on Linux systems.) The R package
also includes a graphical user interface; and Citrus is also available within the Cytobank
commercial online analysis platform.

Version

We used Citrus version 0.08 (the latest version available as of 4 May 2018); with R version
3.5.0.

Parameter settings

We ran Citrus on the semi-simulated benchmark datasets (see Supplementary Note 1) using
the following parameter settings:

AML-sim dataset

• Model type: family = "classification"; modelTypes = "glmnet"; nFolds = 1

• Feature type: featureType = "abundances"

• Columns: using ‘cell type’ markers for clustering
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• Maximum number of cells per sample: fileSampleSize = 5000

• Minimum cluster size: minimumClusterSizePercent = 0.001 (i.e. 0.1%)

• Transformation and scaling: no additional transformation or scaling. We apply an
arcsinh transform with cofactor = 5 separately prior to analysis.

• Number of processor cores: n cores = 1

• Differential features: using cv.min results (this tends to return a larger set of differential
features, since the regularization threshold is less stringent than for the alternative
option cv.1se)

• Experimental design and setup for multiple contrasts: run Citrus pipeline separately
for each condition versus healthy (CN vs. healthy, CBF vs. healthy)

BCR-XL-sim dataset

• Model type: family = "classification"; modelTypes = "glmnet"; nFolds = 1

• Feature type: featureType = "medians"

• Columns: using ‘cell type’ markers (excluding CD45) for clustering, and ‘cell state’
(functional) markers for features (medians)

• Maximum number of cells per sample: fileSampleSize = 5000

• Minimum cluster size: minimumClusterSizePercent = 0.01 (i.e. 1%)

• Transformation and scaling: no additional transformation or scaling. We apply an
arcsinh transform with cofactor = 5 separately prior to analysis.

• Number of processor cores: n cores = 1

• Differential features: using cv.min results (this tends to return a larger set of differential
features, since the regularization threshold is less stringent than for the alternative
option cv.1se)
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3.2 CellCnn

Overview

CellCnn [2] applies convolutional neural networks in a representation learning approach to
detect rare cell populations associated with a condition of interest, such as disease status.
Unlike other existing methods, CellCnn is specifically designed for the detection of rare cell
populations, which are often of particular biological interest. Note that CellCnn does not
distinguish between ‘cell type’ and ‘cell state’ markers, since the representation learning
approach does not require clusters to be defined explicitly; differential states within cell
populations are instead detected as differentially abundant cell populations in the full high-
dimensional space.

The CellCnn results consist of continuous ‘scores’ at the cell level, indicating the
likelihood of each cell belonging to each selected ‘filter’ (detected differential population).
To compare performance with other methods, we require unique results at the cell level.
Therefore, if multiple filters are selected, we sum the scores to give a single total score per
cell. These scores are then used to rank cells by their differential evidence, allowing receiver
operating characteristic (ROC) curves and true positive rate (TPR) vs. false discovery rate
(FDR) curves to be calculated. However, the scores cannot be interpreted as p-values (in
particular, they are not bounded between 0 and 1), so it is not possible to calculate the
observed TPR, FDR, and false positive rate (FPR) at specific FDR cutoffs.

Availability

CellCnn is available as a Python 2.7 package for download from GitHub (https://github.
com/eiriniar/CellCnn). Installation instructions are provided on the GitHub page. The
installation procedure includes automated installation of several dependency packages. Users
are also required to install a modified version of one dependency package (fcm); this is
described on the GitHub page. (To run CellCnn on our Linux system, we also needed
to make some customized edits to the source code: add lines import matplotlib and
matplotlib.use("agg") to the beginning of the script plotting.py.)

Version

We used the latest version of CellCnn available from GitHub as of 4 May 2018 (commit
eee86425c7275c7a3763cdea2f5ffb3b3f71549b, 22 March 2018); with Python version
2.7.14.

Parameter settings

We ran CellCnn on the semi-simulated benchmark datasets (see Supplementary Note 1)
using the following parameter settings:

AML-sim dataset

• Markers: CellCnn did not work correctly when using ‘cell type’ markers only; for some
thresholds and conditions, errors were returned, and the CellCnn runs did not complete.
For the main results, we used all markers instead (including ‘cell state’ markers, which
are not relevant for defining cell populations). This stabilized the CellCnn runs,
and returned results for all thresholds and conditions. (Note that CellCnn does not
distinguish between ‘cell type’ and ‘cell state’ markers, since the representation learning
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approach used by CellCnn does not require clusters to be defined explicitly. Therefore,
including additional, possibly irrelevant markers should generally not seriously affect
performance.)

• Transformation: Do not apply separate arcsinh transform prior to analysis,
since CellCnn automatically applies an internal arcsinh transform. (An option
--no arcsinh is available to disable the internal transform, but this gave errors on our
datasets.)

• Size of each training set (number of cells): --ncell 300 (increased from default of 200
to increase probability that small populations are included in training sets)

• Threshold for choosing responding cell population: --filter response thres 0.3

• Subset selection: Use option --subset selection outlier for datasets with extremely
rare populations (threshold 0.1%). This biases the subsampling for the training sets
towards outliers, increasing the probability that rare populations are included.

• Experimental design and setup for multiple contrasts: run CellCnn pipeline separately
for each condition versus healthy (CN vs. healthy, CBF vs. healthy)

BCR-XL-sim dataset

• Markers: using all markers excluding CD45 (note that CellCnn does not distinguish
between ‘cell type’ and ‘cell state’ markers)

• Transformation: Do not apply separate arcsinh transform prior to analysis,
since CellCnn automatically applies an internal arcsinh transform. (An option
--no arcsinh is available to disable the internal transform, but this gave errors on our
datasets.)

• Size of each training set (number of cells): --ncell 300 (increased from default of 200
to increase probability that small populations are included in training sets)

• Threshold for choosing responding cell population: --filter response thres 0.3
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3.3 cydar

Overview

cydar [7] detects differentially abundant cell populations by assigning cells to overlapping
‘hyperspheres’ in the high-dimensional space of protein markers, and controls the spatial
false discovery rate (FDR) in the high-dimensional space. A key advantage of cydar is that
it explicitly controls the error rate (spatial FDR) and returns results as adjusted p-values.
Note that cydar does not distinguish between ‘cell type’ and ‘cell state’ markers; differential
states within populations are instead detected as differentially abundant populations in the
full high-dimensional space.

The cydar results consist of adjusted p-values at the hypersphere level. Since the
hyperspheres can overlap, there can be multiple p-values for each cell. However, to compare
performance with other methods, we require unique results at the cell level. To achieve this,
we assign a unique adjusted p-value to each cell by selecting the smallest adjusted p-value for
any hypersphere containing that cell.

Availability

cydar is available as an R package from Bioconductor (http://bioconductor.org/
packages/cydar). Installation from Bioconductor automatically installs all required
dependencies.

Version

We used cydar version 1.4.0 (the latest version available as of 4 May 2018); with R version
3.5.0.

Parameter settings

We ran cydar on the semi-simulated benchmark datasets (see Supplementary Note 1) using
the following parameter settings:

AML-sim dataset

• No subsampling: option equalize = FALSE in function poolCells to select all cells

• Transformation: arcsinh transform with cofactor = 5

• Markers: using ‘cell type’ markers

• Differential testing: using edgeR for differential tests (as described in the cydar

Bioconductor vignette)

• Experimental design and setup for multiple contrasts: preprocessing and model fitting
is performed on combined data from all conditions (CN, CBF, and healthy); differential
tests are calculated separately for each contrast (CN vs. healthy, CBF vs. healthy)

• Filtering: remove low-abundance hyperspheres with average log counts per million
(CPM) below 1 (reduced from the default of 5)

• Significance threshold for adjusted p-values: 10%
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BCR-XL-sim dataset

• No subsampling: option equalize = FALSE in function poolCells to select all cells

• Transformation: arcsinh transform with cofactor = 5

• Markers: cydar did not work correctly when using all markers or all markers excluding
CD45 (the recommended approach); no clusters were detected as differentially abundant
in this case. For the main results, we used a subset of markers only (lineage markers
excluding CD45, plus pS6). (Therefore, the results are not strictly comparable with
other methods, where all markers excluding CD45 were used.)

• Differential testing: using edgeR for differential tests (as described in the cydar

Bioconductor vignette)

• Filtering: remove low-abundance hyperspheres with average log counts per million
(CPM) below 1 (reduced from the default of 5)

• Significance threshold for adjusted p-values: 10%
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3.4 Notes on performance evaluations and comparisons

Performance metrics

For the main performance evaluations, methods were evaluated by calculating and comparing
(i) receiver operating characteristic (ROC) curves, and (ii) true positive rate (TPR) vs. false
discovery rate (FDR) curves (also showing the observed TPR and FDR at FDR cutoffs of
1%, 5%, and 10%).

Notes

(i) For cell-level evaluation of diffcyt methods, cluster-level p-values and adjusted p-
values are assigned to all cells within each cluster. See sections 3.1–3.3 for descriptions
of the evaluation strategies for the other methods.

(ii) Citrus: ROC curves for Citrus consist of straight-line segments, since Citrus does
not return any continuous scores such as p-values, which could be used to rank clusters
(results are binary; clusters are either selected or not). Since no p-values are available,
it is also not possible to calculate observed TPR and FDR at given FDR cutoffs.

(iii) CellCnn: Scores returned by CellCnn cannot be interpreted as p-values, so it is not
possible to calculate observed TPR and FDR at given FDR cutoffs.

(iv) cydar: For dataset BCR-XL-sim, we ran cydar using only a subset of markers (‘cell type’
markers excluding CD45, plus pS6); running on all markers or all markers excluding
CD45 did not work correctly (no significant differential hyperspheres were returned in
this case). Therefore, results are not strictly comparable with other methods, where all
markers excluding CD45 were used (see Supplementary Note 3).

Software versions

Results and figures were generated using diffcyt version 1.3.0 (available from GitHub at
https://github.com/lmweber/diffcyt/releases) and R version 3.5.0. The versions of
Citrus, CellCnn, and cydar used are listed in sections 3.1–3.3.

3.5 Software and code availability

The current release version of the diffcyt R package is available from Bioconductor
at http://bioconductor.org/packages/diffcyt. The development version (which may
include additional updates) is available via the devel version of Bioconductor, or from
GitHub at https://github.com/lmweber/diffcyt/.

Code scripts to reproduce all performance evaluations and comparisons with existing
methods, and to generate all figures, are available from GitHub at https://github.com/
lmweber/diffcyt-evaluations.
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