
RESEARCH ARTICLE

Optimal classifier for imbalanced data using

Matthews Correlation Coefficient metric

Sabri Boughorbel1*, Fethi Jarray2, Mohammed El-Anbari3

1 Systems Biology Department, Sidra Medical and Research Centre, Doha, Qatar, 2 Laboratoire Cedric,

CNAM, Paris, France, 3 Clinical Research Center, Sidra Medical and Research Center, Doha, Qatar

* sboughorbel@sidra.org

Abstract

Data imbalance is frequently encountered in biomedical applications. Resampling tech-

niques can be used in binary classification to tackle this issue. However such solutions are

not desired when the number of samples in the small class is limited. Moreover the use of

inadequate performance metrics, such as accuracy, lead to poor generalization results

because the classifiers tend to predict the largest size class. One of the good approaches to

deal with this issue is to optimize performance metrics that are designed to handle data

imbalance. Matthews Correlation Coefficient (MCC) is widely used in Bioinformatics as a

performance metric. We are interested in developing a new classifier based on the MCC

metric to handle imbalanced data. We derive an optimal Bayes classifier for the MCC metric

using an approach based on Frechet derivative. We show that the proposed algorithm has

the nice theoretical property of consistency. Using simulated data, we verify the correctness

of our optimality result by searching in the space of all possible binary classifiers. The pro-

posed classifier is evaluated on 64 datasets from a wide range data imbalance. We compare

both classification performance and CPU efficiency for three classifiers: 1) the proposed

algorithm (MCC-classifier), the Bayes classifier with a default threshold (MCC-base) and

imbalanced SVM (SVM-imba). The experimental evaluation shows that MCC-classifier has

a close performance to SVM-imba while being simpler and more efficient.

1 Background

Data imbalance occurs when the sample size in the data classes are unevenly distributed [1].

Such situation is encountered in many applications of bioinformatics [2, 3] such as pre-clinical

drug adverse event, diagnosis of rare diseases, classification of primary form of rare metastatic

tumors, early prediction of medical events from time-series data, etc. Most standard machine

learning algorithms work well with balanced training data but they face challenges when the

dataset classes are imbalanced. In such situation, classification methods tend to be biased

towards the majority class. These algorithms are inefficient in this case mainly because they

seek to maximize a measure of performance such as accuracy which is no longer a proper mea-

sure for imbalanced data. Accuracy treats equally the correctly and incorrectly classified exam-

ples of different data classes. For example, consider a data set that has 10% positive class and
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90% negative class. A naif classifier that always outputs the majority class label will have a high

accuracy of 0.90. As the data imbalance is more pronounced, the evaluation of the classifier

performance must be carried out using adequate metrics in order to take into account the class

distribution and to pay more attention to the minority class. According to Haibo, learning

from class imbalance can be divided into two approaches: 1) data-level strategies such as re-

sampling or combinations and 2) algorithmic strategies such as cost-sensitive and boosting

[4]. The former approach re-balances the class distribution by either oversampling the minor-

ity class or undersampling the majority class or by combing the two. The later approach seeks

to learn more from the minority class by setting a high cost to the misclassification of this

class. A number of metrics have been studied for the purpose of classifying imbalanced data

[5–10]. Tables 1 and 2 describe some known metrics that have been studied in this context.

In this paper we address the optimality and the consistency of binary classification based

on MCC metric. Similar to the approach presented by Oluwasanmi et al., we derive the

optimal form of the Bayes classifier using the Frechet derivative of the MCC metric [6].

We prove the consistency of the proposed algorithm following the theoretical framework

introduced in [7].

1.1 SVM for imbalanced learning

For a benchmark, we selected Support Vector Machine (SVM) for imbalanced data as a good

method from the literature. SVM performs classification by finding the hyperplane (wx + b)

that maximizes the margin between the two classes. However, there are situations where a

nonlinear boundary can separate the groups more efficiently. SVM handles this by using a ker-

nel function (nonlinear) to map the data into a high dimensional space. The performance of

the SVM classifier mainly relies on the choice of kernel function and the tuning of various

parameters in the kernel function The Gaussian radial basis function are among the popular

kernels. For imbalanced data sets we typically use misclassification penalty per class. This is

Table 1. Definitions of the elementary metrics used to formulate the evaluation metrics.

Metric Definition Description Metric Definition Description

TP PðY ¼ 1; y ¼ 1Þ True Positive (correctly identified) FN PðY ¼ 1; y ¼ 0Þ False Negative

TN PðY ¼ 0; y ¼ 0Þ True Negative (correctly rejected) FP PðY ¼ 0; y ¼ 1Þ False Negative

TPR TP/(TP + FN) True Positive Rate TNR TN/(FP + TN) True Negative Rate

Precision TP/(TP + FP) Positive Predictive Value Recall TP/(TP + FN) True Positive Rate

https://doi.org/10.1371/journal.pone.0177678.t001

Table 2. Definitions of the metrics used for classification evaluation. At the exception of Accuracy the

other metrics are suited for imbalanced data.

Metric Expression Reference

MCC TP�TN� FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFNÞðTPþFPÞðTNþFPÞðTNþFNÞ
p [12]

AUC Area under ROC Curve [18]

Accuracy (TPR + TNR)/2 [9]

F1 2= 1

Recallþ
1

Precision

� �
[9, 19, 20]

https://doi.org/10.1371/journal.pone.0177678.t002
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called class-weighted SVM, which minimizes the following program:

SVM-imba

min
w;x�0

jjwjj2

2
þ Cþ

X

i:yi¼0

xi þ C
�
X

xi
i:yi¼1

s:t

yiðwxi þ bÞ � 1 � xi 8i

8
>>>>><

>>>>>:

where ξi is a positive slack variable such that if 0< ξi< 1 then instance i is between margin

and correct side of hyperplane and if ξi> 1 then instance i is misclassified. The parameters C+

and C− are the slack penalties for positive and negative classes receptively.

In this paper, we have used an imbalance SVM with the Gaussian kernel such that for two

instances x and x0, we have K(x, x0) = exp(−γ||x − x0||2). The global model has three parameters

C+, C− and γ. Fig 1 gives an example of the effect of introducing two regularization weights on

the classification results. The decision boundary is shifted towards the the majority class and

hence the performance improved in this example.

Fig 1. An illustration of the effect of introducing different weights in SVM to handle imbalance.

https://doi.org/10.1371/journal.pone.0177678.g001
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We have conducted an experimental analysis to set the value of these parameters based on

the training data. We used the rule of thumb suggested by Akbani et al. that the ratio Cþ
C� is

equal to the minority-to-majority class ratio [11].

The remainder of this paper is organized as follows. In Section 2, we describe a version of

Support Vector Machines that handles imbalanced data. In Section 3, we propose an optimal

classifier based on MCC metric. We show that it is consistent, i.e., it converges asymptotically

to the theoretical optimal classifier. In the last section, we present and discuss the experimental

results.

2 MCC metric for imbalanced data

2.1 MCC definition

The MCC metric has been first introduced by B.W. Matthews to assess the performance of

protein secondary structure prediction [12]. Then, it becomes a widely used performance mea-

sure in biomedical research [13–17]. MCC and Area Under ROC Curve (AUC) have been cho-

sen as the elective metric in the US FDA-led initiative MAQC-II that aims to reach a

consensus on the best practices for development and validation of predictive models for per-

sonalized medicine [16].

Let X be the instance space, X a real valued random input vector, and Y 2 {0, 1} a binary

output variable, with joint distribution ðX;YÞ � P. Let Θ be the space of classifiers

Y ¼ fy : X 7! ½0; 1�g. We define the quantities: p ¼ PðY ¼ 1Þ, gðyÞ ¼ Pðy ¼ 1Þ and

TPðy;PÞ ¼ PðY ¼ 1; y ¼ 1Þ. We define the conditional probability Zx ¼ PðY ¼ 1jX ¼ xÞ.
The MCC can be seen as a discretization of the Pearson correlation for binary variables. In

fact, given two n-vectors x = (x1, . . ., xn)t and y = (y1, . . ., yn)t, recall that the sample linear cor-

relation coefficient is given by

rðx; yÞ ¼
Pn

i¼1
ðxi � x�Þðyi � y�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1
ðxi � x�Þ

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðyi � y�Þ

2

q

If x and y are binary, using some algebra, we have

MCCðx; yÞ � rðx; yÞ ¼
n� TP � ðTPþ FNÞðTPþ FPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞðTPþ FPÞðTN þ FPÞðTN þ FNÞ

p

¼
TP� TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞðTPþ FPÞðTN þ FPÞðTN þ FNÞ

p

2.2 Suitability of MCC for imbalanced data

In order to demonstrate the suitability of MCC for imbalanced data, we considered the follow-

ing simulations: We generated 10000 random class labels {0, 1} such that the proportion of

class 1 is equal to predefined value π< 0.5. We considered three basic classifiers: 1) C1: a classi-

fier that generates stratified random prediction by respecting the training sets class distribu-

tion 2) C2: a classifier that always outputs 0, i.e., the class with the largest sample size, 3) C3: a

classifier that generates random prediction uniformly. For this simulation, we compared the

following metrics, MCC, AUC, Accuracy and F1 described in Table 2. We note that the three

classifiers generate the labels without looking at the information carried by any feature vector.

Therefore it is not expected that any of these classifiers should outperform the others. A good

performance metric should indicate that these classifiers have comparable performance. Fig 2
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summarizes the simulation results. The class proportion π is varied between 0 and 0.5. For

each choice of π, 10000 labels and prediction values for the three classifiers are generated and

the performances for the four metrics are computed. The accuracy and F1 metrics gave varying

performances for classifiers C1 and C2 for the different choices of π. Thus these two metrics are

sensitive to the data imbalance. The metric F1 also showed somewhat varying performance for

classifier C3. On the other hand both metrics MCC and AUC have shown constant perfor-

mance for the different classifiers. Therefore MCC and AUC are robust to data imbalance. The

limitation of using AUC is that there is no explicit formula to compute AUC. On the other

hand, MCC has a close form and it is very well suited to be used for building the optimal classi-

fier for imbalanced data.

2.3 Optimal consistent classifier for MCC metric

Matthews Correlation Coefficient (MCC) is defined in terms of True Positive (TP), True Nega-

tive (TN), False Positive (FP) and False Negative (FN). It can also be re-written in terms of TP,

γ and π as follows:

MCCðyÞ ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðFPþ FNÞðTN þ FPÞðTN þ FNÞ

p ¼
TP � gp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1 � gÞpð1 � pÞ

p :

We recall that g ¼ Pðy ¼ 1Þ is and p ¼ PðY ¼ 1Þ. If the small class is considered to have

the label 1 than π corresponds to the minority class proportion. We quote here some of the

remarks about the MCC metric as mentioned by Baldi et al. [21]:

Fig 2. Performance comparison of the 3 classifiers described in Table 3.

https://doi.org/10.1371/journal.pone.0177678.g002

Table 3. Description of the three simple classifiers. They are used to evaluate the behavior of metrics in

Table 2 for imbalanced data.

Classifiers Description

C1 Generates random predictions by respecting the training set’s class distribution.

C2 Always predicts the most frequent label in the training set.

C3 Generates predictions uniformly at random.

https://doi.org/10.1371/journal.pone.0177678.t003
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• The MCC can be calculated using the confusion matrix.

• The calculation of the MCC metric uses the four quantities (TP, TN, FP and FN), which

gives a better summary of the performance of classification algorithms.

• The MCC is not defined if any of the quantities TP + FN, TP + FP, TN + FP, or TN + FN is

zero.

• MCC takes values in the interval [−1, 1], with 1 showing a complete agreement, −1 a com-

plete disagreement, and 0 showing that the prediction was uncorrelated with the ground

truth.

Theorems 1 and 2 provide the optimal form of the MCC classifier and its consistency,

respectively. Since the optimal threshold δ� is dependent on TP� it cannot be directly used in

Algorithm 1. Instead a grid search can be used for determining the optimal threshold.

We recall that the distribution P satisfies Assumption A (AA for short) if P(ηx� c|y = 1)

and P(ηx� c|y = 0) are continuous for c ¼ d
�
¼

TPþgðp� 2TPÞ
2gð1� gÞ

. We note that AA is verified in par-

ticular if the random variables (ηx|y = 1) and (ηx|y = 0) are continuous.

Theorem 1. (Optimal classifier for MCC metric) Let P be a distribution on X � ½0; 1� that
satisfies assumption A. The optimal binary classifier for the MCCmetric is a thresholded classifier
θ�(x) = sign[(TP − γπ)(ηx − δ�)] where the threshold δ� is defined by d

�
¼

TP�þgðp� 2 TP�Þ
2gð1� gÞ

.

The proof of the theorem involves the use of Frechet derivative that generalizes the notion

of derivation to functions. It is therefore possible to obtain a close form of the optimal classi-

fier. Theorem 1 ensures that the optimal classifier is either sign[(ηx − δ�)] or sign[−(ηx − δ�)]
since the term (TP − γπ) is unknown before designing the classifier. The idea of the optimal

classifier algorithm consists of finding the best classifiers among the set of classifiers sign[(ηx −
δ)] and sign[−(ηx − δ)] for a certain constant δ. We note that both of these classifiers are

among our space of classifiers Θ. Firstly, we divide the training set into two disjoint sets S1 and

S2. Secondly, we estimate the conditional distribution ηx on S1 by using for example a regular-

ized logistic regression. Thirdly, for each value of δ, we compute theMCC performance of the

associated classifiers sign[(ηx − δ)] and sign[−(ηx − δ)] based on the set S2. Finally, we apply a

grid search on δ to select the best classifier having the highestMCC performance.

The algorithm can be described as follows:

Algorithm 1: Algorithm for estimating the optimal MCC classifier.

1 Split the trainingset S ¼ fðXi;YiÞg
n
i¼1

into two sets S1 and S2
2 Estimate ηx usingS1, define ŷ1 d ¼ sign½ðẐx � dÞ� and ŷ2 d ¼ sign½� ðẐx � dÞ�

3 Compute d̂ ¼ argmaxd2ð0;1ÞfMCCnðŷ1 dÞ;MCCnðŷ2 dÞg on S2; where
MCCnðyÞ ¼

TPn � gnpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnð1� gnÞpð1� pÞ
p for classifierθ

4 If MCCnðŷ1 d̂Þ � MCCnðŷ2 d̂Þ then return ŷ1 d̂, else return ŷ2 d̂

Another interesting property is to check the statistical consistency of the optimal MCC clas-

sifier. This property ensures that the estimated classifier converges in probability to the theo-

retical classifier. It gives asymptotic guarantees that the classifier gets closer to the theoretical

best classifier as the size of training data increases.

Theorem 2. (Consistency of the optimal classifier).The optimal classifier defined in Theorem
1 is consistent if the estimate Ẑx is obtained using a proper loss function [22, 23].

The proofs of theorems 1 and 2 are provided in the supplemental material S1 File.
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3 Results

3.1 Synthetic data

The optimality result given in Theorem 2 gives an interesting insight on designing classifier

that could perform close to the optimal classifier. In order to validate the results, we considered

a synthetic dataset similar to the one proposed in [6]. In this problem we know the space of all

possible classifiers. Therefore we can exhaustively search for the optimal classifier and compare

the obtained result with our finding in Theorem 2. We define a domain X ¼ f1; 2; � � � ; 10g.

The posterior distribution μ(x) is defined by generating a random series of value drawn from a

uniform distribution on the interval [0, 1]. The conditional distribution is defined by Zx ¼

1

1þexpð� wxÞ where w is drawn from a standard Gaussian distribution N ð0; 1Þ. The MCC classifier

θ� is obtained using an exhaustive search over all 210 possible classifiers. Fig 3 summarizes the

simulation results for 20 random draw of the data. The black curves represent the distribution

ηx for the different values in X . The green curves show that optimal MCC classifier obtained

by a search across all possible classifiers. Each element in X can be either classified as negative

Fig 3. Optimal classifier for different simulations. The x-axis depcits the possible values in the feature space. The y-axis depicts probability values. δ*,

shown in red, is the optimal derived threshold. The green curve depicts the optimal classifier obtained by exhaustive search maximizing MCC.

https://doi.org/10.1371/journal.pone.0177678.g003
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(-1) or positive (1). Thus in total we have 210 possible classifiers. the optimal classifier is

obtained by searching the classifier that maximizes the performance measure MCC. The red

curves denote the threshold obtained using the result in Theorem 1. The value of the threshold

is shown in the header of each draw. We can clearly see that the derived threshold from Theo-

rem 1 corresponds in all illustrated cases to the optimal classifier obtained by the exhaustive

search. Therefore we can verify that the proposed optimal classifier is the same as obtained by

an exhaustive search.

3.2 Real-world data

In order to evaluate the performance of the proposed classifier, we considered real-world data-

sets that are publicly available. Table 4 summarizes the tested datasets. We collected 64 datasets

that have been previously proposed for the evaluation of imbalanced data classification [24].

Table 4. Description of the 64 datasets used in the experimental section. Sample and feature sizes, imbalance ratio (IR) and small-class proportion π.

The rows are sorted by imbalance ratio (IR).

Datasets # samples # features IR π in %

glass1 213 9 1.80 35.68

ecoli-0_vs_1 219 7 1.84 35.16

wisconsin 682 9 1.85 35.04

pima 767 8 1.87 34.81

iris0 149 4 2.04 32.89

glass0 213 9 2.09 32.39

yeast1 1483 8 2.46 28.93

haberman 305 3 2.77 26.56

vehicle2 845 18 2.88 25.80

vehicle1 845 18 2.89 25.68

vehicle3 845 18 2.99 25.09

glass-0-1-2-3_vs_4-5-6 213 9 3.18 23.94

vehicle0 845 18 3.27 23.43

ecoli1 335 7 3.35 22.99

new-thyroid1 214 5 5.11 16.36

new-thyroid2 214 5 5.11 16.36

ecoli2 335 7 5.44 15.52

segment0 2307 19 6.01 14.26

glass6 213 9 6.34 13.62

yeast3 1483 8 8.10 10.99

ecoli3 335 7 8.57 10.45

page-blocks0 5471 10 8.79 10.22

ecoli-0-3-4_vs_5 199 7 8.95 10.05

ecoli-0-6-7_vs_3-5 221 7 9.05 9.95

ecoli-0-2-3-4_vs_5 201 7 9.05 9.95

yeast-2_vs_4 513 8 9.06 9.94

glass-0-1-5_vs_2 171 9 9.06 9.94

ecoli-0-4-6_vs_5 202 6 9.10 9.90

yeast-0-3-5-9_vs_7-8 505 8 9.10 9.90

glass-0-4_vs_5 91 9 9.11 9.89

ecoli-0-1_vs_2-3-5 243 7 9.12 9.88

(Continued )
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The summary table provides information on the number of examples, number of features, the

imbalance ratio (IR) and the percentage of the minority class. The imbalance ratio (IR) is

defined as the size ratio of the large class and the small class. In our comparison, we included

three classifiers: 1) MCC-classifier: the proposed optimal classifier with the proposed threshold

choice as in Algorithm 1, 2) MCC-bayes: the Bayes classifier with a default threshold choice δ
= 0.5 [25]. 3) SVM-imba: imbalanced SVM classifier with Gaussian kernel that maximizes

MCC metric. The data is split into training and testing sets. The training set is used for fitting

and estimating hyper-parameters. The test set is only used for the evaluation of the classifiers.

The previous procedure is repeated 10 times by randomly generating the train and test set in

order to estimate the the means and standard deviations as depicted in the result tables. The

estimate Ẑx is fitted based a regularized logistic regression. Tables 5 and 6 give the detailed

Table 4. (Continued)

Datasets # samples # features IR π in %

yeast-0-2-5-7-9_vs_3-6-8 1003 8 9.13 9.87

yeast-0-2-5-6_vs_3-7-8-9 1003 8 9.13 9.87

ecoli-0-2-6-7_vs_3-5 223 7 9.14 9.87

ecoli-0-3-4-6_vs_5 204 7 9.20 9.80

ecoli-0-3-4-7_vs_5-6 256 7 9.24 9.77

yeast-0-5-6-7-9_vs_4 527 8 9.33 9.68

ecoli-0-6-7_vs_5 219 6 9.95 9.13

vowel0 987 13 10.09 9.02

glass-0-1-6_vs_2 191 9 10.24 8.90

ecoli-0-1-4-7_vs_2-3-5-6 335 7 10.55 8.66

glass-0-6_vs_5 107 9 10.89 8.41

led7digit-0-2-4-5-6-7-8-9_vs_1 442 7 10.95 8.37

ecoli-0-1_vs_5 239 6 10.95 8.37

glass-0-1-4-6_vs_2 204 9 11.00 8.33

glass2 213 9 11.53 7.98

cleveland-0_vs_4 172 13 12.23 7.56

ecoli-0-1-4-7_vs_5-6 331 6 12.24 7.55

ecoli-0-1-4-6_vs_5 279 6 12.95 7.17

shuttle-c0-vs-c4 1828 9 13.86 6.73

yeast-1_vs_7 458 7 14.27 6.55

glass4 213 9 15.38 6.10

ecoli4 335 7 15.75 5.97

page-blocks-1-3_vs_4 471 10 15.82 5.94

glass-0-1-6_vs_5 183 9 19.33 4.92

yeast-1-4-5-8_vs_7 692 8 22.07 4.34

glass5 213 9 22.67 4.23

yeast-2_vs_8 481 8 23.05 4.16

shuttle-c2-vs-c4 128 9 24.60 3.91

yeast4 1483 8 28.08 3.44

yeast-1-2-8-9_vs_7 946 8 30.53 3.17

yeast5 1483 8 32.70 2.97

ecoli-0-1-3-7_vs_2-6 280 7 39.00 2.50

yeast6 1483 8 41.37 2.36

https://doi.org/10.1371/journal.pone.0177678.t004
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Table 5. Performance comparison in terms of MCC metric. The three compared classifiers are MCC-bayes, MCC-classifier and SVM-imba. The rows are

sorted by imbalance ratio IR. ± depicts one SD.

Datasets MCC-bayes MCC-classifier SVM-imba IR

glass1 0.16 ± 0.1 0.15 ± 0.11 0.45 ± 0.09 1.80

ecoli-0_vs_1 0.96 ± 0.1 0.97 ± 0.22 0.97 ± 0.18 1.84

wisconsin 0.92 ± 0.16 0.93 ± 0.13 0.92 ± 0.09 1.85

pima 0.46 ± 0.07 0.48 ± 0.1 0.45 ± 0.13 1.87

iris0 1 ± 0.08 0.99 ± 0.09 1 ± 0.12 2.04

glass0 0.4 ± 0.08 0.43 ± 0.09 0.59 ± 0.09 2.09

yeast1 0.38 ± 0.06 0.35 ± 0.09 0.4 ± 0.08 2.46

haberman 0.19 ± 0.12 0.2 ± 0.07 0.25 ± 0.09 2.77

vehicle2 0.89 ± 0.12 0.92 ± 0.12 0.95 ± 0.09 2.88

vehicle1 0.43 ± 0.11 0.46 ± 0.06 0.62 ± 0.09 2.89

vehicle3 0.41 ± 0.16 0.42 ± 0.11 0.58 ± 0.14 2.99

glass-0-1-2-3_vs_4-5-6 0.78 ± 0.11 0.81 ± 0.09 0.8 ± 0.08 3.18

vehicle0 0.9 ± 0.12 0.92 ± 0.06 0.93 ± 0.07 3.27

ecoli1 0.68 ± 0.23 0.67 ± 0.11 0.69 ± 0.08 3.35

new-thyroid1 0.94 ± 0.1 0.94 ± 0.12 0.94 ± 0.08 5.11

new-thyroid2 0.94 ± 0.03 0.96 ± 0.04 0.93 ± 0.03 5.11

ecoli2 0.68 ± 0.05 0.68 ± 0.06 0.82 ± 0.03 5.44

segment0 0.99 ± 0.08 0.99 ± 0.09 0.99 ± 0.1 6.01

glass6 0.8 ± 0.1 0.83 ± 0.09 0.82 ± 0.1 6.34

yeast3 0.72 ± 0.09 0.69 ± 0.15 0.72 ± 0.06 8.10

ecoli3 0.49 ± 0.11 0.47 ± 0.07 0.53 ± 0.07 8.57

page-blocks0 0.68 ± 0.07 0.69 ± 0.05 0.8 ± 0.05 8.79

ecoli-0-3-4_vs_5 0.73 ± 0.11 0.75 ± 0.11 0.75 ± 0.15 8.95

ecoli-0-6-7_vs_3-5 0.62 ± 0.18 0.67 ± 0.16 0.71 ± 0.09 9.05

ecoli-0-2-3-4_vs_5 0.78 ± 0.18 0.79 ± 0.16 0.77 ± 0.24 9.05

glass-0-1-5_vs_2 0.09 ± 0.39 0.03 ± 0.16 0.28 ± 0.17 9.06

yeast-2_vs_4 0.72 ± 0.32 0.74 ± 0.3 0.66 ± 0.2 9.06

ecoli-0-4-6_vs_5 0.75 ± 0.45 0.78 ± 0.22 0.82 ± 0.11 9.10

yeast-0-3-5-9_vs_7-8 0.32 ± 0.15 0.37 ± 0.12 0.28 ± 0.1 9.10

glass-0-4_vs_5 0.64 ± 0.16 0.7 ± 0.14 0.76 ± 0.18 9.11

ecoli-0-1_vs_2-3-5 0.77 ± 0.28 0.78 ± 0.2 0.68 ± 0.13 9.12

yeast-0-2-5-6_vs_3-7-8-9 0.52 ± 0.34 0.5 ± 0.18 0.54 ± 0.22 9.13

yeast-0-2-5-7-9_vs_3-6-8 0.76 ± 0.12 0.8 ± 0.08 0.76 ± 0.09 9.13

ecoli-0-2-6-7_vs_3-5 0.68 ± 0.07 0.69 ± 0.09 0.63 ± 0.05 9.14

ecoli-0-3-4-6_vs_5 0.7 ± 0.01 0.77 ± 0.03 0.78 ± 0 9.20

ecoli-0-3-4-7_vs_5-6 0.69 ± 0.07 0.66 ± 0.07 0.67 ± 0.08 9.24

yeast-0-5-6-7-9_vs_4 0.46 ± 0.03 0.49 ± 0.04 0.39 ± 0.04 9.33

ecoli-0-6-7_vs_5 0.77 ± 0.05 0.79 ± 0.05 0.72 ± 0.07 9.95

vowel0 0.8 ± 0.03 0.84 ± 0.03 0.99 ± 0.01 10.09

glass-0-1-6_vs_2 0.27 ± 0.1 0.03 ± 0.11 0.37 ± 0.1 10.24

ecoli-0-1-4-7_vs_2-3-5-6 0.71 ± 0.07 0.71 ± 0.05 0.64 ± 0.05 10.55

glass-0-6_vs_5 0.55 ± 0.01 0.87 ± 0.01 0.78 ± 0.01 10.89

led7digit-0-2-4-5-6-7-8-9_vs_1 0.78 ± 0.01 0.78 ± 0.01 0.67 ± 0.01 10.95

ecoli-0-1_vs_5 0.83 ± 0.12 0.79 ± 0.09 0.78 ± 0.12 10.95

glass-0-1-4-6_vs_2 0.09 ± 0.03 0.05 ± 0.02 0.29 ± 0.02 11.00

glass2 0.18 ± 0.05 0.11 ± 0.04 0.3 ± 0.04 11.53
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performance results for each dataset respectively in terms of MCC and computation time.

Table 7 presents the average performance of the three compared methods. SVM-imba outper-

forms our method by about 3% in terms of MCC. The proposed MCC-classifier was the best

method for 24 datasets versus 31 datasets for SVM-imba, while SVM-bayes was the best classi-

fier for 9 datasets. Similarly Table 8 presents the summary comparison of the training compu-

tation time for the three methods. MCC-classifier and MCC-bayes have a significant efficiency

advantage compared with SVM-imba. Both methods are two to five folds faster than SVM-

imba. This computational advantage is crucial when the size of training dataset becomes very

large. Fig 4 gives a summary of the performance comparison. Although SVM-imba shows an

overall better performance than MCC-classifier, this difference is not very large and the pro-

posed method was able to be the winner in almost as many datasets as for SVM-imba. We

think that the strength of SVM-imba is due to its ability to better handle strong non-linearity

in the dataset using the high-dimensional mapping obtained by the Gaussian kernel. More-

over, SVM-imba had three tuning parameters namely the regularization parameters C+, C−

and the kernel parameter σ. These parameters are giving more capacity to SVM-imba com-

pared with the proposed approach. In terms of computational efficiency, MCC-classifier is

much faster to train than SVM-imba. Table of the algorithm assessed in terms of CPU during

cross-validation of the training and testing are depicted in Fig 5. Our optimal MCC classifier is

clearly more efficient than SVM and has a comparable efficiency to the plugin classifier. There-

fore the introduced optimal classifier comes with some advantages: It gives a good trade-off

between computational efficiency and performance. It provides also attractive theoretical

properties such as consistency and optimality.

In order to have a closer look at the performance of the proposed classifier as a function of

the imbalance ratio we grouped the datasets that have IRs within intervals. The IR ranges are

defined as follows: Datasets with IRs in the interval [ir, ir + 10], ir = 1, . . ., 40 are grouped and

Table 5. (Continued)

Datasets MCC-bayes MCC-classifier SVM-imba IR

cleveland-0_vs_4 0.68 ± 0.03 0.59 ± 0.03 0.58 ± 0.02 12.23

ecoli-0-1-4-7_vs_5-6 0.8 ± 0.03 0.77 ± 0.04 0.72 ± 0.03 12.24

ecoli-0-1-4-6_vs_5 0.66 ± 0.05 0.7 ± 0.05 0.76 ± 0.01 12.95

shuttle-c0-vs-c4 1 ± 0.02 1 ± 0.01 0.99 ± 0.01 13.86

yeast-1_vs_7 0.26 ± 0.06 0.35 ± 0.07 0.26 ± 0.05 14.27

glass4 0.45 ± 0.05 0.42 ± 0.03 0.78 ± 0.03 15.38

ecoli4 0.83 ± 0.13 0.81 ± 0.06 0.73 ± 0.12 15.75

page-blocks-1-3_vs_4 0.66 ± 0.09 0.66 ± 0.11 0.79 ± 0.07 15.82

glass-0-1-6_vs_5 0.5 ± 0.04 0.74 ± 0.03 0.64 ± 0.02 19.33

yeast-1-4-5-8_vs_7 0 ± 0.15 0 ± 0.18 0.09 ± 0.06 22.07

glass5 0.58 ± 0.01 0.77 ± 0.01 0.67 ± 0.08 22.67

yeast-2_vs_8 0.71 ± 0.2 0.72 ± 0.13 0.71 ± 0.07 23.05

shuttle-c2-vs-c4 0.91 ± 0.07 0.87 ± 0.06 0.91 ± 0.06 24.60

yeast4 0.29 ± 0.05 0.24 ± 0.08 0.32 ± 0.1 28.08

yeast-1-2-8-9_vs_7 0.1 ± 0.04 0.17 ± 0.04 0.16 ± 0.03 30.53

yeast5 0.47 ± 0.05 0.54 ± 0.08 0.67 ± 0.06 32.70

ecoli-0-1-3-7_vs_2-6 0.67 ± 0.08 0.65 ± 0.1 0.59 ± 0.06 39.00

yeast6 0.37 ± 0.16 0.41 ± 0.1 0.37 ± 0.09 41.37

https://doi.org/10.1371/journal.pone.0177678.t005
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Table 6. Comparison of training time (in seconds). The three classifiers are MCC-bayes, MCC-classifier and SVM-imba. The rows are sorted by imbalance

ratio IR. ± depicts one SD.

Datasets MCC-bayes MCC-classifier SVM-imba IR

glass1 0.14 ± 0.15 0.16 ± 0.09 0.43 ± 0.11 1.80

ecoli-0_vs_1 0.91 ± 0.09 0.93 ± 0.09 0.96 ± 0.15 1.84

wisconsin 0.93 ± 0.14 0.92 ± 0.09 0.93 ± 0.09 1.85

pima 0.46 ± 0.07 0.45 ± 0.1 0.45 ± 0.09 1.87

iris0 0.97 ± 0.09 0.97 ± 0.11 1 ± 0.16 2.04

glass0 0.39 ± 0.14 0.45 ± 0.09 0.58 ± 0.1 2.09

yeast1 0.37 ± 0.12 0.38 ± 0.07 0.4 ± 0.06 2.46

haberman 0.17 ± 0.13 0.16 ± 0.11 0.23 ± 0.11 2.77

vehicle2 0.91 ± 0.09 0.9 ± 0.11 0.94 ± 0.16 2.88

vehicle1 0.45 ± 0.14 0.44 ± 0.12 0.65 ± 0.11 2.89

vehicle3 0.38 ± 0.11 0.4 ± 0.12 0.57 ± 0.07 2.99

glass-0-1-2-3_vs_4-5-6 0.8 ± 0.13 0.76 ± 0.17 0.83 ± 0.13 3.18

vehicle0 0.92 ± 0.12 0.91 ± 0.1 0.93 ± 0.07 3.27

ecoli1 0.69 ± 0.05 0.67 ± 0.15 0.69 ± 0.09 3.35

new-thyroid1 0.95 ± 0.13 0.92 ± 0.1 0.94 ± 0.09 5.11

new-thyroid2 0.94 ± 0.07 0.94 ± 0.05 0.96 ± 0.02 5.11

ecoli2 0.64 ± 0.08 0.65 ± 0.07 0.82 ± 0.05 5.44

segment0 0.99 ± 0.07 0.99 ± 0.07 0.99 ± 0.06 6.01

glass6 0.84 ± 0.12 0.83 ± 0.13 0.83 ± 0.08 6.34

yeast3 0.71 ± 0.11 0.72 ± 0.18 0.73 ± 0.08 8.10

ecoli3 0.49 ± 0.07 0.49 ± 0.08 0.53 ± 0.06 8.57

page-blocks0 0.7 ± 0.08 0.7 ± 0.07 0.81 ± 0.06 8.79

ecoli-0-3-4_vs_5 0.74 ± 0.21 0.71 ± 0.13 0.8 ± 0.19 8.95

ecoli-0-6-7_vs_3-5 0.65 ± 0.04 0.58 ± 0.06 0.63 ± 0.1 9.05

ecoli-0-2-3-4_vs_5 0.75 ± 0.18 0.77 ± 0.16 0.8 ± 0.19 9.05

glass-0-1-5_vs_2 -0.04 ± 0.25 -0.02 ± 0.21 0.41 ± 0.17 9.06

yeast-2_vs_4 0.7 ± 0.3 0.72 ± 0.23 0.64 ± 0.18 9.06

ecoli-0-4-6_vs_5 0.71 ± 0.4 0.66 ± 0.35 0.78 ± 0.27 9.10

yeast-0-3-5-9_vs_7-8 0.41 ± 0.11 0.41 ± 0.11 0.33 ± 0.09 9.10

glass-0-4_vs_5 0.69 ± 0.16 0.74 ± 0.19 0.84 ± 0.22 9.11

ecoli-0-1_vs_2-3-5 0.65 ± 0.17 0.66 ± 0.22 0.63 ± 0.14 9.12

yeast-0-2-5-6_vs_3-7-8-9 0.54 ± 0.46 0.52 ± 0.34 0.52 ± 0.21 9.13

yeast-0-2-5-7-9_vs_3-6-8 0.81 ± 0.04 0.81 ± 0.06 0.77 ± 0.06 9.13

ecoli-0-2-6-7_vs_3-5 0.64 ± 0.09 0.66 ± 0.06 0.6 ± 0.08 9.14

ecoli-0-3-4-6_vs_5 0.7 ± 0.04 0.68 ± 0.04 0.79 ± 0 9.20

ecoli-0-3-4-7_vs_5-6 0.68 ± 0.07 0.71 ± 0.06 0.69 ± 0.09 9.24

yeast-0-5-6-7-9_vs_4 0.45 ± 0.02 0.45 ± 0.04 0.4 ± 0.05 9.33

ecoli-0-6-7_vs_5 0.72 ± 0.03 0.69 ± 0.06 0.69 ± 0.03 9.95

vowel0 0.84 ± 0.03 0.82 ± 0.03 0.99 ± 0.01 10.09

glass-0-1-6_vs_2 0.13 ± 0.09 0.06 ± 0.11 0.3 ± 0.09 10.24

ecoli-0-1-4-7_vs_2-3-5-6 0.72 ± 0.04 0.66 ± 0.04 0.7 ± 0.02 10.55

glass-0-6_vs_5 0.51 ± 0.01 0.59 ± 0 0.72 ± 0 10.89

led7digit-0-2-4-5-6-7-8-9_vs_1 0.72 ± 0.01 0.74 ± 0.02 0.58 ± 0.01 10.95

ecoli-0-1_vs_5 0.76 ± 0.12 0.8 ± 0.33 0.74 ± 0.18 10.95
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their MCC average performance is computed. Fig 4 presents the average results as a function

of IR. SVM-imba has a slightly better performance than MCC-classifier for low IR. However it

can be seen from the figure that high IR MCC-classifier has better performance. A similar

analysis is performed for the training computational time. Fig 5 shows the average training

time as a function of IR. It shows clearly that MCC-classifier and MCC-bayes outperforms

SVM-imba by one to five folds in terms of computational time.

Table 6. (Continued)

Datasets MCC-bayes MCC-classifier SVM-imba IR

glass-0-1-4-6_vs_2 0.17 ± 0.02 0.05 ± 0.02 0.38 ± 0.02 11.00

glass2 0.1 ± 0.06 0.19 ± 0.04 0.27 ± 0.04 11.53

cleveland-0_vs_4 0.69 ± 0.03 0.66 ± 0.03 0.64 ± 0.02 12.23

ecoli-0-1-4-7_vs_5-6 0.7 ± 0.04 0.72 ± 0.06 0.64 ± 0.03 12.24

ecoli-0-1-4-6_vs_5 0.73 ± 0.04 0.75 ± 0.03 0.78 ± 0.02 12.95

shuttle-c0-vs-c4 0.99 ± 0.02 0.98 ± 0.02 0.99 ± 0.01 13.86

yeast-1_vs_7 0.22 ± 0.06 0.25 ± 0.07 0.29 ± 0.05 14.27

glass4 0.32 ± 0.05 0.35 ± 0.04 0.63 ± 0.05 15.38

ecoli4 0.83 ± 0.06 0.76 ± 0.08 0.76 ± 0.11 15.75

page-blocks-1-3_vs_4 0.58 ± 0.1 0.54 ± 0.11 0.78 ± 0.06 15.82

glass-0-1-6_vs_5 0.52 ± 0.04 0.67 ± 0.03 0.65 ± 0.02 19.33

yeast-1-4-5-8_vs_7 0 ± 0.15 -0.01 ± 0.16 0.09 ± 0.06 22.07

glass5 0.47 ± 0.01 0.61 ± 0.01 0.65 ± 0.08 22.67

yeast-2_vs_8 0.62 ± 0.15 0.61 ± 0.15 0.62 ± 0.09 23.05

shuttle-c2-vs-c4 0.84 ± 0.09 0.72 ± 0.07 0.86 ± 0.07 24.60

yeast4 0.25 ± 0.11 0.27 ± 0.13 0.31 ± 0.12 28.08

yeast-1-2-8-9_vs_7 0.15 ± 0.03 0.11 ± 0.02 0.17 ± 0.04 30.53

yeast5 0.46 ± 0.11 0.47 ± 0.1 0.67 ± 0.05 32.70

ecoli-0-1-3-7_vs_2-6 0.69 ± 0.08 0.69 ± 0.08 0.65 ± 0.07 39.00

yeast6 0.28 ± 0.19 0.45 ± 0.12 0.35 ± 0.09 41.37

https://doi.org/10.1371/journal.pone.0177678.t006

Table 7. MCC average performance over the 64 datasets for the three compared classifiers.

MCC-bayes MCC-classifier SVM-imba

0.60 ± 0.29 0.62 ± 0.29 0.65 ± 0.24

https://doi.org/10.1371/journal.pone.0177678.t007

Table 8. Computation time average (in seconds) over the 64 datasets for the three compared

classifiers.

MCC-bayes MCC-classifier SVM-imba

0.22 ±0.022 0.22 ± 0.027 0.83 ± 1.16

https://doi.org/10.1371/journal.pone.0177678.t008
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4 Conclusion

In this paper we proposed a new method for the classification of imbalanced data based on

MCC metric. We showed the suitability of MCC for imbalanced data. We used Frechet deriva-

tive approach for devising the optimal form of the classifier. We showed that the obtained clas-

sifier has a sign form. As the threshold is dependent on the TP we derived an algorithm for

estimating the classifier from training data. In the experimental analysis we showed, using sim-

ulated data, that the proposed classifier is indeed optimal in the space of all possible classifiers.

We benchmarked our algorithm, MCC-classifier, on a large number of publicly available data-

sets, with respect to imbalanced SVM and MCC-bayes. We showed that our algorithm pro-

vides a good trade-off between performance in terms of MCC and computational efficiency in

terms of training time. As future work, we would like to further explore the space of metrics

suited for imbalanced data that can lead to constant threshold. Thus it will be possible to devise

more efficient algorithms for imbalanced data.

Fig 4. MCC performance comparison of the three classifiers (MCC-bayes, MCC-classifier, SVM-imba).

https://doi.org/10.1371/journal.pone.0177678.g004
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