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Abstract
Anomaly detection is the process of identifying unexpected items or events in datasets,

which differ from the norm. In contrast to standard classification tasks, anomaly detection is

often applied on unlabeled data, taking only the internal structure of the dataset into

account. This challenge is known as unsupervised anomaly detection and is addressed in

many practical applications, for example in network intrusion detection, fraud detection as

well as in the life science and medical domain. Dozens of algorithms have been proposed in

this area, but unfortunately the research community still lacks a comparative universal eval-

uation as well as common publicly available datasets. These shortcomings are addressed

in this study, where 19 different unsupervised anomaly detection algorithms are evaluated

on 10 different datasets from multiple application domains. By publishing the source code

and the datasets, this paper aims to be a new well-funded basis for unsupervised anomaly

detection research. Additionally, this evaluation reveals the strengths and weaknesses of

the different approaches for the first time. Besides the anomaly detection performance,

computational effort, the impact of parameter settings as well as the global/local anomaly

detection behavior is outlined. As a conclusion, we give an advise on algorithm selection for

typical real-world tasks.

Introduction
In machine learning, the detection of “not-normal” instances within datasets has always been
of great interest. This process is commonly known as anomaly detection or outlier detection.
The probably first definition was given by Grubbs in 1969 [1]: “An outlying observation, or
outlier, is one that appears to deviate markedly from other members of the sample in which it
occurs”. Although this definition is still valid today, the motivation for detecting these outliers
is very different now. Back then, the main reason for the detection was to remove the outliers
afterwards from the training data since pattern recognition algorithms were quite sensitive to
outliers in the data. This procedure is also called data cleansing. After the development of more
robust classifiers, the interest in anomaly detection decreased a lot. However, there was a
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turning point around the year 2000, when researchers started to get more interested in the
anomalies itself, since they are often associated with particular interesting events or suspicious
data records. Since then, many new algorithms have been developed which are evaluated in
this paper. In this context, the definition of Grubbs was also extended such that today anoma-
lies are known to have two important characteristics:

1. Anomalies are different from the norm with respect to their features and

2. They are rare in a dataset compared to normal instances.

Anomaly detection algorithms are now used in many application domains and often
enhance traditional rule-based detection systems.

Intrusion detection is probably the most well-known application of anomaly detection [2,
3]. In this application scenario, network traffic and server applications are monitored. Potential
intrusion attempts and exploits should then be identified using anomaly detection algorithms.
Besides this network-based intrusion detection, also host-based intrusion detection systems are
available, commonly using system call data of a running computers. Most security vendors
often call anomaly detection in this context behavioral analysis [4]. An important challenge in
these often commercial Intrusion Detection Systems (IDS) is the huge amount of data to be
processed in near real-time. For this reason, these systems typically use simple but fast anomaly
detection algorithms. Intrusion detection systems are also a good example where anomaly
detection complements traditional rule-based systems: They typically use pattern matching for
the fast and reliable detection of known threats while an additional anomaly detection module
tries to identify yet unknown suspicious activity.

Fraud detection is another application of anomaly detection [5]. Here, typically log data is
analyzed in order to detect misuses of a system or suspicious events indicating fraud. In partic-
ular, financial transactions can be analyzed in order to detect fraudulent accounting [6] and
credit card payments logs can be used to detect misused or stolen credit cards [7]. With the
strong growth in internet payment systems as well as the increase of offered digital goods, such
as ebooks, music, software and movies, fraud detection becomes more and more important in
this area. This is due to the fact that pure digital transactions attract scammers since they are
less likely to be identified in the real world.

Data Leakage Prevention (DLP) is a third important application scenario, where sensitive
information is protected by detecting data loss at an early stage [8]. In principle, it is similar to
fraud detection, but with a focus on near-real-time analysis such that is serves as a precaution
method. In this context, accesses to databases, file servers and other information sources are
logged and analyzed in order to detect uncommon access patterns.

Inmedical applications and life sciences, anomaly detection is also utilized. One example is
patient monitoring, where electrocardiography (ECG) signals or other body sensors are used to
detect critical, possibly life-threatening situations [9]. Additionally, anomaly detection is
applied for analyzing medical images, for example computed tomography (CT) in order to
detect abnormal cells or tumors. In this application, anomaly detection algorithms rely of
course on complex image processing methods as a preprocessing step. In life sciences, anomaly
detection might also be utilized to find pathologies and mutants.

Besides these four main application areas, anomaly detection is also used in many special-
ized applications. For example, surveillance camera data can be analyzed for suspicious move-
ments [10], in smart buildings energy consumption anomalies can be found [11], mobile
communication networks can be monitored [12] and also forged documents can be detected
by a forensic application investigating printed documents [13]. Finally, it is also used in very
complex systems in order to detect critical states, of which engineers and developers did not
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possibly think about during designing the system [14]. Among all these very different applica-
tion domains, synonyms are often used for the anomaly detection process, which include out-
lier detection, novelty detection, fraud detection, misuse detection, intrusion detection and
behavioral analysis. However, the basic underlying techniques refer to the same algorithms pre-
sented in the following sections. More detailed information about application domains as well
as overviews of proposed algorithms can be found in the comprehensive surveys of Chandola
et al. [15], Hodge et al. [16], Pimentel et al. [17] and Markos et al. [18].

As we can see from this huge variety, also different practical requirements exist for anomaly
detection algorithms. In some cases they have to be very fast in a near real-time fashion. In
other cases, detection performance is more important due to a high cost of missing an anomaly.
In this context, it is also possible to classify the application domains with respect to the point in
time when an anomaly should be detected. Among the post-incident analysis and the near
real-time detection, additionally a predictive-driven motivation exists, also know as early warn-
ing [19]. Of course, the latter is the most difficult anomaly detection task, but often major inci-
dents are preceded by minor indications which can be detected.

In this article we present a comparative evaluation of a large variety of anomaly detection
algorithms. Clearly, anomaly detection performance is one very important factor for algorithm
selection. However, we will also outline strength and weaknesses of the algorithms with respect
to their usefulness for specific application scenarios additionally. This supports our main goal
that this work should serve as a guideline for selecting an appropriate unsupervised anomaly
detection algorithm for a given task.

Categorization of Anomaly Detection

Anomaly Detection Setups
In contrast to the well-known classification setup, where training data is used to train a classifier
and test data measures performance afterwards, there are multiple setups possible when talking
about anomaly detection. Basically, the anomaly detection setup to be used depends on the labels
available in the dataset and we can distinguish between three main types as illustrated in Fig 1:

1. Supervised Anomaly Detection describes the setup where the data comprises of fully labeled
training and test data sets. An ordinary classifier can be trained first and applied afterwards.
This scenario is very similar to traditional pattern recognition with the exception that classes
are typically strongly unbalanced. Not all classification algorithms suit therefore perfectly for
this task. For example, decision trees like C4.5 [20] cannot deal well with unbalanced data,
whereas Support Vector Machines (SVM) [21] or Artificial Neural Networks (ANN) [22]
should perform better. However, this setup is practically not very relevant due to the assump-
tion that anomalies are known and labeled correctly. For many applications, anomalies are
not known in advance or may occur spontaneously as novelties during the test phase.

2. Semi-supervised Anomaly Detection also uses training and test datasets, whereas training
data only consists of normal data without any anomalies. The basic idea is, that a model of
the normal class is learned and anomalies can be detected afterwards by deviating from that
model. This idea is also known as “one-class” classification [23]. Well-known algorithms
are One-class SVMs [24] and autoencoders [25]. Of course, in general any density estima-
tion method can be used to model the probability density function of the normal classes,
such as Gaussian Mixture Models [26] or Kernel Density Estimation [27].

3. Unsupervised Anomaly Detection is the most flexible setup which does not require any
labels. Furthermore, there is also no distinction between a training and a test dataset. The
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idea is that an unsupervised anomaly detection algorithm scores the data solely based on
intrinsic properties of the dataset. Typically, distances or densities are used to give an esti-
mation what is normal and what is an outlier. This article only focuses on this unsupervised
anomaly detection setup.

Anomaly Detection Algorithm Output
As an output of an anomaly detection algorithm, two possibilities exist. First, a label can be
used as a result indicating whether an instance is an anomaly or not. Second, a score or confi-
dence value can be a more informative result indicating the degree of abnormality. For super-
vised anomaly detection, often a label is used due to available classification algorithms. On the
other hand, for semi-supervised and unsupervised anomaly detection algorithms, scores are
more common. This is mainly due to the practical reasons, where applications often rank
anomalies and only report the top anomalies to the user. In this work, we also use scores as out-
put and rank the results such that the ranking can be used for performance evaluation. Of
course, a ranking can be converted into a label using an appropriate threshold.

Fig 1. Different anomaly detectionmodes depending on the availability of labels in the dataset. (a) Supervised anomaly detection uses a fully labeled
dataset for training. (b) Semi-supervised anomaly detection uses an anomaly-free training dataset. Afterwards, deviations in the test data from that normal
model are used to detect anomalies. (c) Unsupervised anomaly detection algorithms use only intrinsic information of the data in order to detect instances
deviating from the majority of the data.

doi:10.1371/journal.pone.0152173.g001
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Types of Anomalies
The main idea of unsupervised anomaly detection algorithms is to detect data instances in a
dataset, which deviate from the norm. However, there are a variety of cases in practice where
this basic assumption is ambiguous. Fig 2 illustrates some of these cases using a simple two-
dimensional dataset. Two anomalies can be easily identified by eye: x1 and x2 are very different
from the dense areas with respect to their attributes and are therefore called global anomalies.
When looking at the dataset globally, x3 can be seen as a normal record since it is not too far
away from the cluster c2. However, when we focus only on the cluster c2 and compare it with x3
while neglecting all the other instances, it can be seen as an anomaly. Therefore, x3 is called a
local anomaly, since it is only anomalous when compared with its close-by neighborhood. It
depends on the application, whether local anomalies are of interest or not. Another interesting
question is whether the instances of the cluster c3 should be seen as three anomalies or as a

Fig 2. A simple two-dimensional example. It illustrates global anomalies (x1, x2), a local anomaly x3 and a micro-cluster c3.

doi:10.1371/journal.pone.0152173.g002
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(small) regular cluster. These phenomena is calledmicro cluster and anomaly detection algo-
rithms should assign scores to its members larger than the normal instances, but smaller values
than the obvious anomalies. This simple example already illustrates that anomalies are not
always obvious and a score is much more useful than a binary label assignment.

To this end, an anomaly is always referred to a single instance in a dataset only occurring
rarely. In reality, this is often not true. For example, in intrusion detection, anomalies are often
referred to many (suspicious) access patterns, which may be observed at a larger amount as the
normal accesses. In this case, an unsupervised anomaly detection algorithm directly applied on
the raw data will fail. The task of detecting single anomalous instances in a larger dataset (as
introduced so far) is called point anomaly detection [15]. Nearly all available unsupervised
anomaly detection algorithms today are from this type. If an anomalous situation is represented
as a set of many instances, this is called a collective anomaly. Each of these instances is not neces-
sarily a point anomaly, but only a specific combination thereof defines the anomaly. The previ-
ous given example of occurring multiple specific access patterns in intrusion detection is such a
collective anomaly. A third kind are contextual anomalies, which describe the effect that a point
can be seen as normal, but when a given context is taken into account, the point turns out to be
an anomaly. The most commonly occurring context is time. As an example, suppose we mea-
sure temperature in a range of 0°to 35°C during the year. Thus, a temperature of 26°C seems
pretty normal, but when we take the context time into account (e.g. the month), such a high
temperature of 26°C during winter would definitively be considered as an anomaly.

Fortunately, it is still possible to utilize point anomaly detection algorithms to detect contex-
tual and collective anomalies. In order to do so, the context itself can be included as a new fea-
ture. Concerning our simple example of the temperature measurement, a direct inclusion of
the month as a second feature is easily possible. However, in more complex scenarios, one or
more newly derived features might be required to transform the contextual anomaly detection
task into a point anomaly detection problem. For addressing the collective anomalies, correla-
tion, aggregation and grouping is used to generate a new dataset with a different representation
of the features [11]. This transformation from a collective anomaly detection task to a point
anomaly detection task requires a solid background knowledge of the dataset and often results
in a point anomaly detection dataset, which features and instances are very different from the
original raw data. This semantic transformation is also called the generation of a data view
[28]. As we can conclude from these three different type of anomalies, not every anomaly
detection task is suitable to be processed directly using an anomaly detection algorithm. In fact,
many practical anomaly detection problems often require a preprocessing in order to generate
the appropriate data views. In this work, we also carefully selected the datasets to be point
anomaly detection problems, such that no further preprocessing is necessary and we can
directly compare the detection performance of the different algorithms.

Normalization
When a dataset was preprocessed such that it represents a point anomaly detection problem,
the final step before the unsupervised anomaly detection algorithm can be applied is normali-
zation. Similar to the generation of the data view, normalization should also be performed with
taking background knowledge into account. Typical normalization methods are min-max nor-
malization, where every feature is normalized into a common interval (for example [0, 1]), and
standardizing, where each feature is transformed such that its mean is zero and its standard
deviation is one. In practical applications, the min-max normalization is often used, so do we
in the evaluation in this article. Please note, that sometimes straight-forward normalization can
also be contra-productive. Let’s assume we have a categorical binary feature converted to [0, 1]
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and a numerical value measuring a length normalized to [0, 1]. Since the categorical binary fea-
ture results in distances being either one or zero, it has a much bigger influence on the result as
the numerical value. This is the reason, why background information is also important during
normalization to avoid these errors in the normalization process. Possible solutions to that
challenge include using different intervals for the different semantic features, or when categori-
cal features come into play, using a weighted distance function [29].

RelatedWork
It could already be inferred from the previous sections that this article primarily deals with
multivariate tabular data. Differently structured data, such as graphs or sequential data, is often
processed in machine learning using dedicated algorithms. This also holds true in anomaly
detection and there exist many algorithms for detecting anomalies in graphs [30], in sequences
and time series [31] and for addressing spatial data [32]. However, these specialized algorithms
are not evaluated in this work, which focuses on tabular data.

Not many comparative studies on unsupervised anomaly detection do exist today. On the
one hand, authors of newly proposed algorithms compare their results with state-of-the-art
techniques, for example LOF and k-NN, but often datasets are not published and the evalua-
tion lacks in some other evaluation criteria (local vs. global or parameter k). On the other hand,
some studies have been published referring to a specific application scenario, often with a sin-
gle dataset only. Lazarevic et al. [33] compared LOF, k-NN, PCA and unsupervised SVM for
intrusion detection using the KDD-Cup99 dataset. A similar study by Eskin et al. [34] evaluates
clustering, k-NN as well as a one-class SVM on the same dataset. A broader study using six dif-
ferent methods for unsupervised anomaly detection was performed by NASA [14] for detecting
engine failures of space shuttles. Unfortunately, the dataset is not available and the algorithms
used are besides GMM and one-class SVMs four commercially available software systems. Aus-
lander et al. [35] applied k-NN, LOF and clustering on maritime video surveillance data. Ding
et al. [36] studied SVDD, a k-NN classifier, k-means and a GMM for detecting anomalies in
ten different datasets. Although the authors claim to evaluate unsupervised techniques, the use
of a training phase indicates a semi-supervised setup to our understanding. Carrasquilla [37]
published a study on comparing different anomaly detection algorithms based on 10 different
datasets. Unfortunately, only one unsupervised anomaly detection algorithm was applied,
whereas its results were compared to other supervised anomaly detection algorithms. Some of
the datasets used in this study are also used as a basis in our evaluation, but with an appropriate
preprocessing. All related work concerning the particular algorithms used in this study can be
found in the next section.

Besides studies evaluating a single algorithm only, outlier ensembles [38, 39] is a technique
of combining multiple unsupervised anomaly detection algorithms in order to boost their joint
anomaly detection performance. Since unsupervised anomaly detection does not rely on
labeled data, this task is very challenging and often restricted to simple combinations. In this
article we do not evaluate ensembles, although the results reported here might serve as a selec-
tion criteria for these algorithms in this currently evolving new research field.

Unsupervised Anomaly Detection Algorithms
Unsupervised anomaly detection algorithms can be roughly categorized into the following
main groups [15] as illustrated in Fig 3: (1) Nearest-neighbor based techniques, (2) Clustering-
based methods and (3) Statistical algorithms. Recently, also a new group is emerging based on
(4) Subspace techniques. In this work, we cover all of these categories with a focus on nearest-
neighbor and clustering-based anomaly detection, the by far most used categories in practice.
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Furthermore, other algorithms exist, which are not direct members of these categories, often
based on available classification algorithms such as neural networks [25] or support vector
machines [40]. It is not an easy task to select a proper subset for this work keeping in mind that
dozens of different algorithms have been proposed. However, our selection is based on practi-
cal applications in the past and attention in the scientific community. Since one goal of this
work is also to standardize datasets, we also welcome other researchers to compare their pro-
posed methods with the results presented here. In this section, we shortly introduce the algo-
rithms and their main ideas, but due to the high number of algorithms, the interested reader is
referred to the authors original publication for more details.

k-NN Global Anomaly Detection
The k-nearest-neighbor global unsupervised anomaly detection algorithm is a straightforward
way for detecting anomalies and not to be confused with k-nearest neighbor classification. As
the name already implies, it focuses on global anomalies and is not able to detect local anoma-
lies. First, for every record in the dataset, the k-nearest-neighbors have to be found. Then, an
anomaly score is computed using these neighbors, whereas two possibilities have been pro-
posed: Either the distance to the kth-nearest-neighbor is used (a single one) [41] or the average
distance to all of the k-nearest-neighbors [42] is computed. In the following, we refer to the
first method as kth-NN and the latter as k-NN. In practical applications, the k-NN method is
often preferred [13, 19]. However, the absolute value of the score depends very much on the
dataset itself, the number of dimensions, and on normalization. As a result, it is in practice not
easy to select an appropriate threshold, if required.

The choice of the parameter k is of course important for the results. If it is chosen too low,
the density estimation for the records might be not reliable. On the other hand, if it is too large,
density estimation may be too coarse. As a rule of thumb, k should be in the range 10< k< 50.
In classification, it is possible to determine a suitable k, for example by using cross-validation.
Unfortunately, there is no such technique in unsupervised anomaly detection due to missing
labels. For that reason, we use later in the evaluation many different values for k and average in
order to get a fair evaluation when comparing algorithms.

In Fig 4 we exemplary illustrate how the result of an unsupervised anomaly detection algo-
rithm (here: k-NN with k = 10) can be visualized. The plot was generated using a simple, artifi-
cially generated two-dimensional dataset with four Gaussian clusters and uniformly sampled

Fig 3. A taxonomy of unsupervised anomaly detection algorithms comprising of four main groups.Note that CMGOS can be categorized in two
groups: It is a clustering-based algorithm as well as estimating a subspace of each cluster.

doi:10.1371/journal.pone.0152173.g003
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anomalies. After applying the global k-NN, the outlier scores are visualized by the bubble-size
of the corresponding instance. The color indicates the label, whereas anomalies are red. It can
be seen, that k-NN cannot detect the anomalies close to the clusters well and assign small
scores.

Local Outlier Factor (LOF)
The local outlier factor [43] is the most well-known local anomaly detection algorithm and also
introduced the idea of local anomalies first. Today, its idea is carried out in many nearest-
neighbor based algorithms, such as in the ones described below. To calculate the LOF score,
three steps have to be computed:

1. The k-nearest-neighbors have to be found for each record x. In case of distance tie of the kth

neighbor, more than k neighbors are used.

Fig 4. A visualization of the results of the k-NN global anomaly detection algorithm. The anomaly score is represented by the bubble size whereas the
color shows the labels of the artificially generated dataset.

doi:10.1371/journal.pone.0152173.g004
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2. Using these k-nearest-neighbors Nk, the local density for a record is estimated by computing
the local reachability density (LRD):

LRDkðxÞ ¼ 1=

X
o2NkðxÞ

dkðx; oÞ

jNkðxÞj

0
BB@

1
CCA ð1Þ

whereas dk(�) is the reachability distance. Except for some very rare situations in highly
dense clusters, this is the Euclidean distance.

3. Finally, the LOF score is computed by comparing the LRD of a record with the LRDs of its k
neighbors:

LOFðxÞ ¼

X
o2NkðxÞ

LRDkðoÞ
LRDkðxÞ

jNkðxÞj
ð2Þ

The LOF score is thus basically a ratio of local densities. This results in the nice property
of LOF, that normal instances, which densities are as big as the densities of their neighbors,
get a score of about 1.0. Anomalies, which have a low local density, will result in larger scores.
At this point it is also clear why this algorithm is local: It only relies on its direct neighbor-
hood and the score is a ratio mainly based on the k neighbors only. Of course, global anoma-
lies can also be detected since they also have a low LRD when comparing with their
neighbors. It is important to note that in anomaly detection tasks, where local anomalies are
not of interest, this algorithm will generate a lot of false alarms as we found out during our
evaluation. Again, the setting of k is crucial for this algorithm. Besides trying out different
values for k, the authors of the algorithm suggested to use an ensemble strategy for comput-
ing the LOF [43]. Here, scores for different k’s up to an upper bound are computed and then,
the maximum of these scores is taken. Besides computing the LOF score for a single k, we
also take this strategy into account in our evaluation, referring to it as LOF-UB (upper
bound). For comparison reasons, we also use different upper bounds and average the results
again.

Connectivity-Based Outlier Factor (COF)
The connectivity-based outlier factor [44] is similar to LOF, but the density estimation for
the records is performed differently. In LOF, the k-nearest-neighbors are selected based on
the Euclidean distance. This indirectly assumes, that the data is distributed in a spherical
way around the instance. If this assumption is violated, for example if features have a direct
linear correlation, the density estimation is incorrect. COF wants to compensate this short-
coming and estimates the local density of the neighborhood using an shortest-path
approach, called the chaining distance. Mathematically, this chaining distance is the mini-
mum of the sum of all distances connecting all k neighbors and the instance. For simple
examples, where features are obviously correlated, this density estimation approach per-
forms much more accurate [29]. Fig 5 shows the outcome for LOF and COF in direct com-
parison for a simple two-dimensional dataset, where the attributes have a linear dependency.
It can be seen that the spherical density estimation of LOF cannot detect the outlier, but
COF succeeded by connecting the normal records with each other for estimating the local
density.
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Influenced Outlierness (INFLO)
When a dataset contains clusters with different densities and they are close to each other, it can
be shown that LOF fails scoring the instances at the borders of the clusters correctly. The influ-
enced outlierness (INFLO) [45] algorithm uses besides the k-nearest-neighbors additionally a
reverse nearest neighborhood set, in which records are stored for with the current record is a

Fig 5. Comparing COF (top) with LOF (bottom) using a simple dataset with a linear correlation of two attributes. It can be seen that the spherical
density estimation of LOF fails to recognize the anomaly, whereas COF detects the non-linear anomaly (k = 4).

doi:10.1371/journal.pone.0152173.g005
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neighbor. For computing the INFLO score, both neighborhood sets are combined. Then, the
local density of this set and the score is computed the same way as for LOF. This procedure is
illustrated in Fig 6, where for the red instance the 6-nearest-neighbors reside in the gray area.
This red instance will clearly be detected as an anomaly by LOF, since five of its neighbors have
a much higher local density. For INFLO, also the instances are taken into account for which
the red instance is a neighbor (the blue instances). Using this extended set, the red instance is
less likely to be detected as an anomaly by INFLO. Please note, that the set of k-nearest-neigh-
bors typically contains k instances (with the exception of ties), whereas the reverse nearest
neighborhood set may contain any amount. Depending on the data, it might contain no
instance, exactly k or even more instances. When using this strategy, it is possible to compute
more accurate anomaly scores when clusters of different densities are close to each other.

Local Outlier Probability (LoOP)
Until now, all presented algorithms output anomaly scores, which are more handy than binary
labels. When comparing the global k-NN algorithm and LOF, the property of having a refer-
ence point for normal instances of LOF seems even better than the arbitrary score of k-NN.
Unfortunately, it is still not clear in LOF, above which score threshold we can clearly think
about an anomaly. The local outlier probability (LoOP) [46] tries to address this issue by out-
putting an anomaly probability instead of a score, which might also result in better comparison
of anomalous records between different datasets.

Similar to the previous local algorithms, LoOP also uses a neighborhood set for local density
estimation. In contrast to other algorithms, it computes this density differently: The basic
assumption is that the distances to the nearest neighbors follow a Gaussian distribution. Since
distances are always positive, LoOP assumes a “half-Gaussian” distribution and uses its stan-
dard deviation, called the probabilistic set distance. It is used (similar to LOF) as a local density
estimation—the ratios of each instance compared to its neighbors results in a local anomaly
detection score. For converting this score into a probability, a normalization and a Gaussian

Fig 6. Comparing INFLOwith LOF shows the usefulness of the reverse neighborhood set. For the red instance, LOF takes only the neighbors in the
gray area into account resulting in a high anomaly score. INFLO additionally takes the blue instances into account (reverse neighbors) and thus scores the
red instance more normal.

doi:10.1371/journal.pone.0152173.g006
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error function is applied finally. The idea of having a probabilistic output instead of a score is
very useful. However, some critical thoughts should arise in this context [29]. For example, if
the algorithm assigns a 100% probability to an instance, what would happen, if we add another
instance to the dataset which is more anomalous then that? As we can see from this simple
example, probabilities are still relative to the data and might not differ too much from a nor-
malized score.

Local Correlation Integral (LOCI)
For all of the above algorithms, choosing k is a crucial decision for detection performance. As
already mentioned, there is no way of estimating a good k based on the data. Nevertheless, the
local correlation integral (LOCI) [47] algorithm addresses this issue by using a maximization
approach. The basic idea is that all possible values of k are used for each record and finally the
maximum score is taken. To achieve this goal, LOCI defines the r-neighborhood by using a
radius r, which is expanded over time. Similar to LoOP, the local density is also estimated by
using a half-Gaussian distribution, but here the amount of records in the neighborhood is used
instead of the distances. Also, the local density estimation is different in LOCI: It compares two
different sized neighborhoods instead of the ratio of the local densities. A parameter α controls
the ratio of the different neighborhoods. Removing the critical parameter k comes at a price.
Typically, nearest-neighbor based anomaly detection algorithms have computational complex-
ity of O(n2) for finding the nearest neighbors. Since in LOCI additionally the radius r needs to
be expanded from one instance to the furthest, the complexity increases to O(n3), which makes
LOCI too slow for larger datasets.

Approximate Local Correlation Integral (aLOCI)
The authors of LOCI were aware of the long runtime and proposed aLOCI [48], a faster but
approximate version of LOCI. aLOCI uses quad trees to speed up the counting of the two neigh-
borhoods using some constraints for α. If a record is in the center of a cell of such a quad tree,
the counting estimation is good, but if it is at the border, the approximation might be bad. For
that reason, multiple (g) quad trees are constructed with the hope, that there is a good approxi-
mative tree for every instance. Furthermore, the tree depth (L) needs to be specified. The authors
claim that the total complexity of their algorithm, comprising of tree creation and scoring, is O
(NLdg + NL(dg + 2d)), whereas d is the number of dimensions. As typical for tree approaches, it
can be seen that the number of dimensions has a very negative impact on the runtime. During
our evaluation, we experienced very different results from aLOCI. Sometimes results seem rea-
sonable and sometimes results showed a very poor anomaly detection performance. This obser-
vation was tracked down the tree creation process. For a perfect estimation, N trees are required.
Since the trick of this algorithm is to use only g trees, this also turned out to be a weak point: If,
by chance, the trees represented the normal instances well, many approximations were correct
and thus the output of the algorithm. On the other hand, if the trees did not well represent the
majority of the data, the anomaly detection performance was unacceptable.

Cluster-Based Local Outlier Factor (CBLOF/ uCBLOF)
All previous anomaly detection algorithms are based on density estimation using nearest-
neighbors. In contrast, the cluster-based local outlier factor (CBLOF) [49] uses clustering in
order to determine dense areas in the data and performs a density estimation for each cluster
afterwards. In theory, every clustering algorithm can be used to cluster the data in a first step.
However, in practice k-means is commonly used to take advantage of the low computational
complexity, which is linear compared to the quadratic complexity of the nearest-neighbor
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search. After clustering, CBLOF uses a heuristic to classify the resulting clusters into large and
small clusters. Finally, an anomaly score is computed by the distance of each instance to its
cluster center multiplied by the instances belonging to its cluster. For small clusters, the dis-
tance to the closest large cluster is used. The procedure of using the amount of cluster members
as a scaling factor should estimate the local density of the clusters as stated by the authors. We
showed in previous work that this assumption is not true [50] and might even result in a incor-
rect density estimation. Therefore, we additionally evaluate a modified version of CBLOF
which simply neglects the weighting, referred to as unweighted-CBLOF (uCBLOF) in the fol-
lowing. The results of uCBLOF using a simple two-dimensional dataset are visualized in Fig 7,
where the color corresponds to the clustering result of the preceding k-means clustering algo-
rithm. Similar to the nearest-neighbor based algorithms, the number of initial clusters k is also
a critical parameter. Here, we follow the same strategy as for the nearest-neighbor based algo-
rithms and evaluate many different k values. Furthermore, k-means clustering is a non-deter-
ministic algorithm and thus the resulting anomaly scores can be different on multiple runs. To

Fig 7. A visualization of the results for the uCBLOF algorithm. The anomaly score is represented by the bubble size, whereas the color corresponds to
the clustering result of the preceded k-means clustering algorithm. Local anomalies are obviously not detected using uCBLOF.

doi:10.1371/journal.pone.0152173.g007
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this end we follow a common strategy, which is to apply k-means many times on the data and
pick the most stable result. However, clustering-based anomaly detection algorithms are very
sensitive to the parameter k, since adding just a single additional centroid might lead to a very
different outcome.

Local Density Cluster-based Outlier Factor (LDCOF)
As already pointed out, the local density estimation of CBLOF using only the amount of cluster
members is controversial. Our extension uCBLOF is in fact not a local anomaly detection
method any more since the density of the cluster is completely neglected. The local density
cluster-based outlier factor LDCOF [50] addresses this shortcoming by estimating the clusters’
densities assuming a spherical distribution of the cluster members. Similar to CBLOF, k-means
clustering is performed first as well as the following procedure of separating the clusters into
small and large clusters. Then, for each cluster, the average distance of all cluster members to
the centroid is calculated. Finally, the LDCOF score is computed by dividing the distance of an
instance to its cluster center by the average distance. The result of this procedure is that the
LDCOF score is a local score with respect to the possibly varying cluster densities. One advan-
tage of LDCOF is also that the score has some relative reference point, similar to LOF: A score
of 1.0 or below will be assigned to normal instances.

Clustering-based Multivariate Gaussian Outlier Score (CMGOS)
The clustering-based multivariate Gaussian outlier score is another enhancement of cluster-
based anomaly detection [29]. In CMGOS, the local density estimation is performed by esti-
mating a multivariate Gaussian model, whereas the Mahalanobis distance [51] serves as a basis
for computing the anomaly score. As in the previously introduced algorithms, a k-means clus-
tering and the separation into small and large clusters is performed first. Then, for each cluster,
the covariance matrix S is computed robustly. Finally, the CMGOS score is computed by divid-
ing the Mahalanobis distance of an instance to its nearest cluster center by the chi-squared dis-
tribution with a certain confidence interval. The latter serves again as a normalization step
such that outlier scores of 1.0 or below indicate a high probability of the instance to be normal.
Due to the nature of the Mahalanobis distance, scores of outliers increase quickly, such that in
practical applications extraordinary large scores can be observed (compared to other methods).
For the estimation of the covariance matrix, robustness to outliers is essential since outliers are
known to have a significant impact on the variance. In total, three different estimation methods
are proposed: (1) Reduction. Here, the covariance is computed twice. After a first iteration, out-
liers are removed and covariance is computed again. This procedure is similar to the well-
known univariate Grubb’s Test [1]. (2) Regularization. This approach follows an idea from
classification [52], where the covariance matrix is a weighted sum of the covariance matrix of
the cluster and the global covariance matrix. (3) Minimum Covariance Determinant (MCD)
[53]. This compute intense approach follows the idea to estimate a compact covariance matrix
by a brute-force search for normal records, which is done by minimizing the determinant. Our
evaluation is based on an approximative alternative [54], since the brute-force search is not
suitable for large datasets. We refer in our evaluation to the methods as CMGOS-Red,
CMGOS-Reg and CMGOS-MCD, respectively.

Histogram-based Outlier Score (HBOS)
The histogram-based outlier score [55] is a simple statistical anomaly detection algorithm
assuming independence of the features. The basic idea is, that for each feature of the dataset, a
histogram is created. Then, for each instance in the dataset, the inverse height of the bins it
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resides (representing the density estimation) of all features are multiplied. The idea is very sim-
ilar to the Naive Bayes algorithm in classification, were all independent feature probabilities are
multiplied. The idea of using histograms for fast semi-supervised anomaly detection is also
very popular in intrusion detection, were a histogram of normal data is learned [56]. On the
first sight, it might seem a bit contra-productive to neglect the dependencies among features.
However, this comes with a big advantage, which is processing speed. HBOS can process a
dataset under a minute, whereas nearest-neighbor based computations take over 23 hours [29].
As a further remark, the drawback of assuming feature independence becomes less severe
when a dataset has a high number of dimensions due to a larger sparsity. As a critical parame-
ter, the number of bins k needs to be defined. Furthermore, HBOS allows two different histo-
gram creation modes: (1) Static bin sizes with a fixed bin width and (2) dynamic bins such that
the number of bins is approximately the same. The latter results in a histogram with different
bin widths, but it can still be used for density estimation using the area of a bin. The advantage
of the second histogram creation technique is, that the density estimation is more robust in
case of having large outlying values. In our evaluation, we use this second “dynamic bin width”
mode as well as different settings for k.

One-Class Support Vector Machine
One-class support vector machines [24] are often used for semi-supervised anomaly detection
[15]. In this setting, a one-class SVM is trained on anomaly-free data and later, the SVM classi-
fies anomalies and normal data in the test set. One-class SVMs intend to separate the origin
from the data instances in the kernel space, which results in some kind of complex hulls
describing the normal data in the feature space. Although one-class SVMs are heavily used as a
semi-supervised anomaly detection method, it is an unsupervised algorithm by design when
using a soft-margin. In particular, it has been shown that they converge to the true density level
set [57]. In the unsupervised anomaly detection scenario, the one-class SVM is trained using
the dataset and afterwards, each instance in the dataset is scored by a normalized distance to
the determined decision boundary [40]. The parameter ν needs to be set to a value lager than
zero such that the contained anomalies are correctly handled by a soft-margin. Additionally,
one-class SVMs have been modified such that they include further robust techniques for
explicitly dealing with outliers during training [40]. The basic idea is that anomalies contribute
less to the decision boundary as normal instances. Two different techniques were developed,
whereas the η one-class SVM showed superior results. In this enhancement, η is a further opti-
mization objective during training, which estimates the normality of an instance. In our evalua-
tion we are using both unsupervised algorithms, the regular one-class SVM as well as the
extended η one-class SVM.

Robust Principal Component Analysis (rPCA)
Principal component analysis is a commonly used technique for detecting subspaces in data-
sets. It also may serve an an anomaly detection technique, such that deviations from the normal
subspaces may indicate anomalous instances. The principal components are the eigenvectors
of the covariance matrix and thus their computation shares the same difficulties as CMGOS:
Anomalies have a big influence on the covariance matrix and density estimation might be
incorrect. Almost identical to the reduction technique of CMGOS, a robust version was pro-
posed [58], which also computes the covariance matrix twice based on the Mahalanobis dis-
tance. Once the principal components are determined, the question is which components
should be used to score anomalous instances. Using the major components show global devia-
tions from the majority of the data whereas using minor components can indicate smaller local
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deviations. In our evaluation we follow different strategies, namely using all components, using
major components only, using minor components only and finally using major and minor
components while neglecting the ones in the middle [59]. Please note that there is a strong con-
nection of rPCA and CMGOS-Red: When rPCA takes all components into consideration, the
method is basically the same as applying CMGOS with setting k = 1.

Reviewing Algorithm Complexities and Implementation
Concerning the nearest-neighbor based algorithms with the exception of LOCI, the computa-
tional complexity of finding the nearest-neighbors is O(n2). The remaining computations, for
example the density or LOF calculations, can be neglected in practice (less than 1% of runtime).
Thus, all of these algorithms perform similar in terms of runtime. In our implementation, we
used many optimizations so that the algorithms still perform well on large-scale datasets. In
particular, first duplicates are removed from the data and a weight matrix is stored. This proce-
dure might reduce the dataset size and thus save computation time. Memory consumption was
reduced by storing only the top-k-neighbors during the search. Additionally, a smart paralleli-
zation technique was implemented depending on the number of dimensions. More informa-
tion about the enhancements can be found in [50]. For LOCI, the computational complexity is
O(n3) and the memory complexity is O(n2), which makes the algorithm practically too
demanding for real-world applications. aLOCI on the contrary is faster and the runtime
depends on the number of quad-trees to be used.

Concerning the cluster-based methods (except for CMGOS-MCD), the main computational
complexity is due to the clustering algorithm, which is typically faster than O(n2) if k-means is
applied. In practice, when k-means is run several times in order to get stable clustering result,
the runtime advance is reduced but still present. For large-scale datasets and big data, cluster-
ing-based methods have thus a performance advance compared to nearest-neighbor based
methods. However, CMGOS-MCD is an exception here since the MCD computation is again
quadratic for each cluster. Furthermore, as already mentioned, HBOS is even faster than the
clustering-based algorithms and a good candidate for near real-time large-scale applications.

The complexity of the one-class SVM based algorithms is hard to determine since it depends
on the number of support vectors and thus on the structure of the data. Furthermore, the
applied gamma tuning of the SVMs has a huge impact on runtime since its computation has a
quadratic complexity. Lastly, the complexity of rPCA is O(d2 n + d3) and therefore depends
heavily on the number of dimensions. If the number of dimensions is small, the algorithm
competes in practice among the fastest algorithms in our trials. The source code of the algo-
rithms and our optimizations are published as an open source plug-in (available at http://git.
io/vnD6n) of the RapidMiner [60] data mining software.

Datasets for Benchmarking
Although unsupervised anomaly detection does not utilize any label information in practice,
they are needed for evaluation and comparison. When new algorithms are proposed, it is com-
mon practice that an available public classification dataset is modified and the method is com-
pared with the most known algorithms such as k-NN and LOF. There is a set of typically used
datasets for classification, which are retrieved from UCI machine learning repository [61]. The
typical preprocessing comprises of selecting one class as the anomalous class and sub-sampling
some small amount of instances from that randomly. Unfortunately, the resulting datasets are
hardly published and cannot be regenerated by other scientists. Since the number of anomalies
is typically very low, a different subset might result in very different detection scores. To this
end, we only found three different datasets available online [62, 63]. With this work we want to
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compensate this shortcoming and present and publish more different meaningful datasets,
such that algorithms are better comparable in the future. Please note that some of the datasets
have already been introduced previously in the first author’s Ph.D. Thesis [29] We also put a
strong emphasis on a semantic background such the evaluation makes sense. This includes the
two assumptions that (1) anomalies are rare and (2) are different from the norm. Additionally,
we consider only point anomaly detection tasks as meaningful datasets for benchmarking since
a different preprocessing might again lead to non-comparable results. For example, the dataset
Poker Hand, which was used for evaluation before [37], is not used because the anomalies (spe-
cial winning card decks) violate the assumption (2). Similarly, the use of the very popular
KDD-Cup99 dataset needs special attention, which was originally used for benchmarking
intrusion detection classification systems. Many attacks (anomalies) in the dataset define a col-
lective anomaly detection problem and can thus not be used. Since the dataset is so popular, a
point anomaly detection task was extracted as stated below.

If the following, we describe the datasets and our preprocessing in more detail. All modifica-
tions have been made publicly available (http://dx.doi.org/10.7910/DVN/OPQMVF). A sum-
mary about the resulting dataset characteristics is given below in Table 1.

Breast Cancer Wisconsin (Diagnostic) The features of the breast-cancer dataset are
extracted from medical images of a fine needle aspirate (FNA) describing the cell nuclei [64].
The task of the UCI dataset is to separate cancer from healthy patients. From the 212 malignant
instances, we kept the first 10 as anomalies (similar to [46]). This results in a unsupervised
anomaly detection dataset containing 367 instances in total and having 2.72% anomalies.

Pen-Based Recognition of Handwritten Text (global) This UCI dataset contains the hand-
written digits 0–9 of 45 different writers, which we will use twice. Here, in the “global” task, we
only keep the digit 8 as the normal class and sample the 10 digits from all of the other classes as
anomalies. This results in one big normal cluster and global anomalies sparsely distributed.
The resulting pen-global dataset has 16 dimensions and 809 instances including a large amount
of anomalies (11.1%).

Pen-Based Recognition of Handwritten Text (local) The previous dataset is used again,
but now with a different preprocessing. All digits are kept, except for the digit 4. From this
class, the first 10 instances are kept (similar to [46]). This results in a local anomaly detection
task with clusters of different densities and 10 local anomalies, which we refer to as pen-local.

Letter Recognition The UCI letter dataset contains originally 16 extracted features from the
26 letters of the English alphabet. This dataset has been preprocessed for unsupervised anomaly

Table 1. The 10 datasets used for comparative evaluation of the unsupervised anomaly detection algorithms from different application domains. A
broad spectrum of size, dimensionality and anomaly percentage is covered. They also differ in difficulty and cover local and global anomaly detection tasks.

Dataset Size Dimensions Outliers Percentage

b-cancer 367 30 10 2.72

pen-global 809 16 90 11.1

letter 1,600 32 100 6.25

speech 3,686 400 61 1.65

satellite 5,100 36 75 1.49

pen-local 6,724 16 10 0.15

annthyroid 6,916 21 250 3.61

shuttle 46,464 9 878 1.89

aloi 50,000 27 1508 3.02

kdd99 620,098 38 1,052 0.17

doi:10.1371/journal.pone.0152173.t001
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detection and was made publicly available [62]. Three letters have been chosen to form the nor-
mal class and anomalies have been sampled from the rest, which should result in a global
anomaly detection task. The authors claim that the task is easy and they applied a procedure to
make it more challenging: The number of dimensions was doubled to 32 by randomly
concatenating normal instances of the three classes to all instances, including anomalies. This
results in anomalies to have also some normal features making unsupervised anomaly detec-
tion more difficult. The resulting dataset has 1,600 instances including 6.25% anomalies.

Speech Accent Data The speech dataset was also provided by [62] and contains real world
data from recorded English language. The normal class contains data from persons having an
American accent whereas the outliers are represented from seven other speakers, having a dif-
ferent accent. The feature vector is the i-vector of the speech segment, which is a state-of-the-
art feature in speaker recognition [65]. The dataset has 400 dimensions and is thus the task in
our evaluation with the largest number of dimensions. It has 3,686 instances including 1.65%
anomalies.

Landsat Satellite The satellite dataset comprises of features extracted from satellite observa-
tions. In particular, each image was taken under four different light wavelength, two in visible
light (green and red) and two infrared images. The task of the original dataset is to classify the
image into the soil category of the observed region. We defined the soil classes “red soil”, “gray
soil”, “damp gray soil” and “very damp gray soil” as the normal class. From the semantically
different classes “cotton crop” and “soil with vegetation stubble” anomalies are sampled. After
merging the original training and test set into a single dataset, the resulting dataset contains
5,025 normal instances as well as 75 randomly sampled anomalies (1.49%) with 36 dimensions.

Thyroid Disease The thyroid dataset is another dataset from UCI machine learning reposi-
tory in the medical domain. The raw patient measurements contain categorical attributes as
well as missing values such that it was preprocessed in order to apply neural networks [66],
also known as the “annthyroid” dataset. We make also use of this preprocessing, resulting in 21
dimensions. Normal instances (healthy non-hypothyroid patients) were taken from the train-
ing and test datasets. From the test set, we sampled 250 outliers from the two disease classes
(subnormal function and hyperfunction) resulting in a new dataset containing 6,916 records
with 3.61% anomalies.

Statlog Shuttle The shuttle dataset describes radiator positions in a NASA space shuttle
with 9 attributes and was designed for supervised anomaly detection. Besides the normal “radi-
ator flow” class, about 20% of the original data describe abnormal situations. To reduce the
number of anomalies, we select the class 1 as normal and apply a stratified sampling for the
classes 2, 3, 5, 6 and 7, similar to [67, 68]. Again, training and test set are combined in a single
big dataset, which has as a result 46,464 instances with 1.89% anomalies.

Object Images (ALOI) The aloi dataset is derived from the “Amsterdam Library of Object
Images” collection [63]. The original dataset contains about 110 images of 1000 small objects
taken under different light conditions and viewing angles. From the original images, a 27
dimensional feature vector was extracted using HSB color histograms [38]. Some objects were
chosen as anomalies and the data was down-sampled such that the resulting dataset contains
50,000 instances including 3.02% anomalies.

KDD-Cup99 HTTP As mentioned earlier, the kdd99 dataset is often used for unsupervised
anomaly detection. Similar to the shuttle dataset, this artificially created dataset was also
designed for supervised anomaly detection. It basically contains simulated normal and attack
traffic on an IP level in a computer network environment in order to test intrusion detection
systems. In the past, the dataset was sometimes used by just sampling randomly from the
attacks. Due to the nature of some attacks, for example DDoS, this represents not a point
anomaly detection problem. To serve for our unsupervised evaluation purpose best, we decided
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to use HTTP traffic only (similar to [37]) and also limit DoS traffic from the dataset (similar to
[69]). To this end, only 500 instances from these attacks are kept. This ensures that we do not
have larger clusters among the anomalies. Furthermore, some of the features were adopted:
First, “protocol” and “port” information were removed, since we select HTTP traffic only. The
categorical “flags” feature was also removed and the remaining binary categorical features rep-
resented as 0 or 1 resulting in a total of 38 dimensions. The large-scale dataset contains finally
620,089 instances with only 0.17% anomalies. To our knowledge, this is the largest dataset in
terms of instances used so far for unsupervised anomaly detection.

Dataset Summary
All dataset characteristics are summarized in Table 1. With our dataset selection, we cover a
broad spectrum of application domains including medical applications, intrusion detection,
image and speech recognition as well as the analysis of complex systems. Additionally, the
datasets cover a broad range of properties with regard to dataset size, outlier percentage and
dimensionality. To our knowledge, this is the most comprehensive collection of unsupervised
anomaly detection datasets for algorithm benchmarking. As already stated, we published the
datasets to encourage researchers to compare their proposed algorithms with this work and
hope to establish an evaluation standard in the community.

Comparative Evaluation
Comparing the anomaly detection performance of unsupervised anomaly detection algorithms
is not as straight forward as in the classical supervised classification case. In contrast to simply
compare an accuracy value or precision/recall, the order of the anomalies should be taken into
account. In classification, a wrongly classified instance is for sure a mistake. This is different in
unsupervised anomaly detection. For example, if a large dataset contains ten anomalies and
they are ranked among the top-15 outliers, this is still a good result, even if it is not perfect. To
this end, a common evaluation strategy for unsupervised anomaly detection algorithms is to
rank the results according to the anomaly score and then iteratively apply a threshold from the
first to the last rank. This results in N tuple values (true positive rate and false positive rate),
which form a single receiver operator characteristic (ROC). Then, the area under the curve
(AUC), the integral of the ROC, can be used as a detection performance measure. A nice inter-
pretation of the AUC is also given when following the proof from [70] and transform it into
the anomaly detection domain: The AUC is then the probability that an anomaly detection
algorithm will assign a randomly chosen normal instance a lower score than a randomly cho-
sen anomalous instance. Hence, we think the AUC is a perfect evaluation method and ideal for
comparison. However, the AUC only takes the ranking into account and completely neglects
the relative difference of the scores among each other. Other measures can be used to cope
with this shortcoming by using more sophisticated rank comparisons. Schubert et al. [38] com-
pares different rank correlation methodologies, for example Spearman’s ρ and Kendall’s τ as an
alternative to AUC with a focus on targeting outlier ensembles. A second possible drawback of
using AUCmight be that it is not ideal for unbalanced class problems and methods like area
under precision-recall curve or Matthews correlation coefficient could possibly better empha-
size small detection performance changes. Nevertheless, AUC based evaluation has been
evolved to be the de facto standard in unsupervised anomaly detection, most likely due to its
practical interpretability, and thus also serves as the measure of choice in our evaluation.

Please note that the AUC, when it is used in a traditional classification task, typically
involves a parameter, for example k, to be altered. In unsupervised anomaly detection, the
AUC is computed by varying an outlier threshold in the ordered result list. As a consequence,
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if a parameter has to be evaluated (for example different k), this yields to multiple AUC values.
Another important question in this context is how to evaluate k, the critical parameter for most
of the nearest-neighbor and clustering-based algorithms. In most publications, researchers
often fix k to a predefined setting or choose “a good k” depending on a favorite outcome. We
believe that the latter is not a fair evaluation, because it somehow involves using the test data
(the labels) for training. In our evaluation, we decided to evaluate many different k’s between
10 and 50 and finally report the averaged AUC as well as the standard deviation. In particular,
for every k, the AUC is computed first by varying a threshold among the anomaly scores as
described above. Then, the mean and standard deviation for all these AUCs is reported. This
procedure basically corresponds to a random-k-picking strategy within the given interval,
which is often used in practice when k is chosen arbitrarily. The lower bound of 10 was chosen
because of statistical fluctuations occurring below. For the upper bound, we set a value of 50
such that it is still suitable for our smaller datasets. We are aware, that one could argue to
increase the upper bound for the larger datasets or even make it smaller for the small datasets
like breast-cancer. Fig 8 shows a broader evaluation of the parameter k illustrating that our
lower and upper bound is in fact useful.

Results of the Nearest-neighbor based Algorithms
Table 2 shows the results of the nearest-neighbor based algorithms. The AUC values are aver-
aged for 10� k� 50 and the standard deviation is shown. For LOCI, which does not rely on k,

Fig 8. The AUC values for the nearest-neighbor based algorithms on the breast-cancer dataset. It can be seen that k values smaller than 10 tend to
result in poor estimates, especially when considering local anomaly detection algorithms. Please note that the AUC axis is cut off at 0.5.

doi:10.1371/journal.pone.0152173.g008
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only one result is available. As already stated, LOCI is very computationally intensive and
could not be computed within a reasonable time for larger datasets. Since aLOCI is not a deter-
ministic algorithm, it was run 20 times and the average result was taken. For both, LOCI and
aLOCI, the recommended parameter settings from the authors were used [47]. When compar-
ing aLOCI with the other algorithms, the results are significantly worse: It is often the worst
performing algorithm and the high standard deviation of the results additionally shows less sta-
bility of the results. Thus, the use of LOCI and aLOCI is at least questionable in practice. In this
context, recall that it is not possible on unlabeled data to determine whether a non-determin-
istic aLOCI outcome is good or not for a practical application. Furthermore, it can be observed
from the table that the results of the two k-NN and LOF variants do not differ much and there
is no clear winner or recommendation. At least for LOF, this result was not expected, since the
authors claimed that the LOF-UB ensemble performs better in general [43].

Another very important finding from our evaluation can be inferred when comparing the
two columns of the pen-global/local datasets. It can be seen that the local anomaly detection
algorithms perform much worse on the global anomaly detection task. Also, the same observa-
tion could be made on the (global) shuttle and kdd99 dataset. For the latter, Fig 9 illustrates the
superiority of k-NN compared to the local algorithms. A final observation is the general poor
performance of all algorithms on the high-dimensional speech dataset. An AUC of 0.5 shows
that the detection performance is as good as a random guess. When we looked into the results
in more detail, we could observe that the performance for very small k values is much better
(for almost all algorithms). The k values of 2, 3 and 4 show AUCs of up to 0.78 with a quick
drop when k is larger. We suspect that due to the high number of dimensions, the curse of
dimensionality leads to poor results for k> 5.

Results of the Clustering-based Algorithms
Table 3 summarizes the results for the clustering-based anomaly detection algorithms. For
every algorithm, we used the parameter settings as recommended by the authors as a default:
The parameters separating into small/large clusters for CBLOF and uCBLOF are α = 95, β = 5,

Table 2. The results of the nearest-neighbor based algorithms showing the AUC and the standard deviation for 10� k� 50 for all of the 10 datasets.
Due to the computational complexity, LOCI could not be computed for larger datasets.

Alg. b-cancer pen-global pen-local letter speech satellite thyroid shuttle aloi kdd99

k-NN 0.9791
±0.0010

0.9872
±0.0055

0.9837
±0.0018

0.8719
±0.0176

0.4966
±0.0101

0.9701
±0.0007

0.5956
±0.0125

0.9424
±0.0069

0.6502
±0.0191

0.9747
±0.0045

kth-NN 0.9807
±0.0008

0.9778
±0.0142

0.9757
±0.0069

0.8268
±0.0228

0.4784
±0.0007

0.9681
±0.0015

0.5748
±0.0128

0.9434
±0.0101

0.6177
±0.0189

0.9796
±0.0035

LOF 0.9816
±0.0024

0.8495
±0.0679

0.9877
±0.0016

0.8673
±0.0271

0.5038
±0.0215

0.8147
±0.1126

0.6470
±0.0192

0.5127
±0.0129

0.7563
±0.0135

0.5964
±0.0284

LOF-UB 0.9805
±0.0020

0.8541
±0.0777

0.9876
±0.0013

0.9019
±0.0030

0.5233
±0.0134

0.8425
±0.0839

0.6663
±0.0103

0.5182
±0.0124

0.7713
±0.0045

0.5774
±0.0159

COF 0.9518
±0.0054

0.8695
±0.1261

0.9513
±0.0134

0.8336
±0.0228

0.5218
±0.0287

0.7491
±0.0952

0.6505
±0.0154

0.5257
±0.0086

0.7857
±0.0118

0.5548
±0.0236

INFLO 0.9642
±0.0171

0.7887
±0.0540

0.9817
±0.0024

0.8632
±0.0250

0.5017
±0.0191

0.8272
±0.0761

0.6542
±0.0158

0.4930
±0.0175

0.7684
±0.0142

0.5524
±0.0222

LoOP 0.9725
±0.0123

0.7684
±0.0994

0.9851
±0.0068

0.9068
±0.0078

0.5347
±0.0343

0.7681
±0.0433

0.6893
±0.0149

0.5049
±0.0035

0.7899
±0.0093

0.5749
±0.0275

LOCI 0.9787 0.8877 — 0.7880 0.4979 — — — — —

aLOCI 0.8105
±0.0883

0.6889
±0.0345

0.8011
±0.0615

0.6208
±0.0220

0.4992
±0.0348

0.8324
±0.0372

0.6174
±0.0221

0.9474
±0.0379

0.5855
±0.0143

0.6552
±0.0458

doi:10.1371/journal.pone.0152173.t002
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Fig 9. The AUC values for the large kdd99 dataset for 0 < k < 100. It can be easily seen that the performance of local anomaly detection algorithms is poor
for this global anomaly detection challenge.

doi:10.1371/journal.pone.0152173.g009

Table 3. The results of the clustering-based algorithms showing the AUC and the standard deviation for different initial k (10� k� 50). The last row
shows a comparison with the best nearest-neighbor method for the dataset.

Alg. b-cancer pen-global pen-local letter speech satellite thyroid shuttle aloi kdd99

CBLOF 0.2983
±0.1492

0.3190
±0.1155

0.6995
±0.1407

0.6792
±0.0386

0.5021
±0.0680

0.5539
±0.0692

0.5825
±0.0384

0.9037
±0.1263

0.5393
±0.0154

0.6589
±0.2098

uCBLOF 0.9496
±0.0390

0.8721
±0.0511

0.9555
±0.0109

0.8192
±0.0231

0.4692
±0.0029

0.9627
±0.0038

0.5469
±0.0212

0.9716
±0.0324

0.5575
±0.0061

0.9964
±0.0016

LDCOF 0.7645
±0.1653

0.5948
±0.0825

0.9593
±0.0145

0.8107
±0.0244

0.4366
±0.0099

0.9522
±0.0325

0.5703
±0.0232

0.8076
±0.1814

0.5726
±0.0146

0.9873
±0.0034

CMGOS-Red 0.9140
±0.0815

0.5693
±0.1000

0.9727
±0.0141

0.7711
±0.0614

0.5077
±0.0158

0.9054
±0.0233

0.4395
±0.0402

0.5425
±0.2446

0.5852
±0.0161

0.7265
±0.1027

CMGOS-Reg 0.8992
±0.0643

0.6994
±0.0681

0.9449
±0.0510

0.8902
±0.0200

0.5081
±0.0161

0.9056
±0.0233

0.6587
±0.0268

0.5679
±0.2402

0.5855
±0.0161

0.9797
±0.0080

CMGOS-MCD 0.9196
±0.0830

0.6265
±0.0969

0.9038
±0.0511

0.7848
±0.0485

— 0.9120
±0.0520

0.8014
±0.0436

0.6903
±0.1670

0.5547
±0.0160

0.9696
±0.0416

Best NN 0.9816
±0.0024

0.9872
±0.0055

0.9877
±0.0016

0.9068
±0.0078

0.5347
±0.0343

0.9701
±0.0007

0.6893
±0.0149

0.9474
±0.0379

0.7899
±0.0093

0.9796
±0.0035

doi:10.1371/journal.pone.0152173.t003
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and for LDCOF and CMGOS γ = 0.3. Additionally, for CMGOS the estimated amount of nor-
mal instances is pn = 0.975. In order to make the clustering-based algorithm evaluation as com-
parable as possible, we used the same clustering result for every algorithm. For example, for
k = 10 we applied k-means and stored the resulting centroids and cluster belongings. Then, all
algorithms use this result as a basis for computing their scores. Since k-means is also a non-
deterministic algorithm, we ran it 10 times on the same data and follow a common strategy by
picking the most stable clustering result.

The results show that CBLOF performs poorly in most cases. Especially on the smaller data-
sets, the algorithm is even worse than random guessing. Since this behavior is very suspicious,
we looked into the results in detail: AUCs from 0.10 to 0.94 occurred, but no correlation to k
could be found. Our suspicion concerning the results is again the possible flaw of weighting the
scores by number of members in the cluster—especially on small datasets the influence seems
disadvantageous. Simply removing the weighting yields to much better results, proven by the
results of uCBLOF. Similar to our observation on the nearest-neighbor based algorithms, again
local methods tend to perform worse on global anomaly detection tasks. Concerning the differ-
ent robust estimations of the covariance matrix for CMGOS, two techniques seem to perform
well: GMGOS-Red as well as CMGOS-MCD. Due to the much higher computational complex-
ity, we recommend to use CMGOS-Red. The high number of dimensions in the speech dataset
causes CMGOS-MCD to not complete within a reasonable amount of time.

Special attention should be payed on the last row of the table, where the best nearest-neigh-
bor method is listed for comparison. It can be seen that nearest-neighbor based unsupervised
anomaly detection performs better in general. However, a much more severe issue is from our
point of view the reliability indicated by the corresponding standard deviations. In practice,
when the parameter k cannot be determined and needs to be fixed to a certain value, nearest-
neighbor based algorithms generate much more stable results.

Results of other Algorithms
In the remaining, the four algorithms are evaluated which do not belonging to one of the
groups above. Table 4 shows the results for the statistical HBOS, the subspace rPCA algorithm
as well as the results for the two one-class SVMmethods. The evaluation of HBOS is performed
similar to the previous algorithms, whereas here k refers to the number of bins used. The

Table 4. The AUC results of the remaining unsupervised anomaly detection algorithms. Four different strategies for keeping the components have
been used for rPCA, while for HBOS the number of different bins was altered.

Alg. b-cancer pen-global pen-local letter speech satellite thyroid shuttle aloi kdd99

HBOS 0.9827
±0.0016

0.7477
±0.0206

0.6798
±0.0249

0.6216
±0.0073

0.4708
±0.0030

0.9135
±0.0047

0.9150
±0.0123

0.9925
±0.0039

0.4757
±0.0010

0.9990
±0.0007

rPCA 0.9664
±0.0000

0.9375
±0.0001

0.7841
±0.0151

0.8095
±0.0029

0.5024
±0.0000

0.9461
±0.0023

0.6574
±0.0036

0.9963
±0.0000

0.5621
±0.0000

0.7371
±0.0000

oc-SVM 0.9721
±0.0102

0.9512
±0.0436

0.9543
±0.0130

0.5195
±0.0382

0.4650
±0.0021

0.9549
±0.0021

0.5316
±0.0152

0.9862
±0.0002

0.5319
±0.0021

0.9518
±0.0050

η-oc-
SVM

0.9581
±0.0311

0.8993
±0.0387

0.9236
±0.0140

0.7298
±0.1365

0.4649
±0.0026

0.9430
±0.0058

0.5625
±0.0088

0.9848
±0.0019

0.5221
±0.0025

0.7945
±0.0000

Best NN 0.9816
±0.0024

0.9872
±0.0055

0.9877
±0.0016

0.9068
±0.0078

0.5347
±0.0343

0.9701
±0.0007

0.6893
±0.0149

0.9474
±0.0379

0.7899
±0.0093

0.9796
±0.0035

Best
Cluster

0.9496
±0.0390

0.8721
±0.0511

0.9727
±0.0141

0.8902
±0.0200

0.5081
±0.0161

0.9627
±0.0038

0.7843
±0.0437

0.9716
±0.0324

0.5855
±0.0161

0.9964
±0.0016

Best Alg. HBOS k-NN LOF LoOP LoOP k-NN HBOS HBOS COF HBOS

doi:10.1371/journal.pone.0152173.t004
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constraint 10� k� 50 was also used for HBOS. rPCA has no critical parameter k to be evalu-
ated, but as described earlier, a different amount of components can be used. In total, we
applied four different strategies: (1) Using all components, (2) Using major components only,
(3) Using minor components only and (4) Using major and minor while neglecting the ones in
the middle. We found that the results of the four strategies are very similar (for some datasets
even identical) and therefore reported the averaged AUC in the table. The parameters ν for the
one-class SVM as well as β for the enhanced η one-class SVM were also altered in the range 0.2
� ν� 0.8 and the average AUC was reported. Choosing these parameters seems less critical
than choosing a correct k for other algorithms—it seems that a setting of β/ν = 0.5 is a good
choice on average. However, the parameter value should not be set too small to avoid an incor-
rect density estimation. Furthermore, a Gaussian kernel with automatic gamma tuning was
used. Tuning this parameter automatically is ideal for unsupervised anomaly detection, but
requires an significant amount of computation time.

The results of the four algorithms are very diverse. For us, the biggest surprise was the good
performance of HBOS on the larger (global) datasets. For kdd99, the result is almost perfect
while on the thyroid dataset, it outperformed all the other algorithms by far. The other algo-
rithm with a rather simple (linear) model, rPCA, performed average. One exception is the shut-
tle dataset, where rPCA obtains together with HBOS the best results. One-class SVMs turned
out to be not outstanding algorithms and results are average. When comparing the enhanced η
one-class SVM with the regular one, the latter seems to perform better.

Computation Time Comparison of Algorithms
If determinable, the theoretical computational complexity of the evaluated algorithms was
already discussed. However, in practice, the actual computation times may still be quite differ-
ent from each other. For this reason, the computation times were measured and are listed in
Table 5. Please note that the listed times are measured in seconds for the first nine datasets and
in minutes for the last column, the large kdd99 dataset. The time was measured on a single
thread basis. For the clustering-based algorithms, the computation time depends strongly on
the number of clusters. For that reason, the times for 10 and 50 clusters are listed separately for
each algorithm.

Except for the very demanding LOCI algorithm, it can be seen that the computation for the
small datasets is sufficiently fast, such that the choice of an appropriate algorithm should focus
on detection performance, not on runtime. On the contrary, for large datasets, computation
time differences are significant. For example, for the largest dataset kdd99, the fastest algorithm
HBOS took less than 4 seconds, whereas the slowest GMGOS-MCD took more than 6 days.

In general, it can be observed that nearest-neighbor based algorithms have almost identical
runtimes. This is due to the fact, that the nearest-neighbor search is responsible for most of the
computation time, whereas the (different) computation of the scores itself has almost no influ-
ence. Furthermore, it can be confirmed that the clustering-based algorithms (except for
CMGOS-MCD) are faster than the nearest-neighbor based algorithms with the quadratic
search complexity. Please keep in mind that the time includes the execution of ten different
runs of the underlying k-means algorithm. At this point, we would like to state again, that the
use of CMGOS-MCD is not recommended. HBOS is by far the fastest algorithm among all,
which is due to its very simple idea of assuming independence of the features. The comparable
high runtimes of the SVM based algorithms are mainly based on the automatic gamma tuning,
which has a quadratic complexity. For example, for the aloi dataset, the gamma tuning takes
about 16 hours, whereas the core SVM training is only 30 seconds for the η one-class SVM and
16 minutes for the regular one-class SVM.
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Conclusion
A comprehensive evaluation of 19 different unsupervised anomaly detection algorithms on 10
datasets from different application domains has been performed for the first time. The algo-
rithms have been released as an open source extension for the RapidMiner data mining soft-
ware (available at http://git.io/vnD6n). Additionally, the datasets have been made publicly
available (http://dx.doi.org/10.7910/DVN/OPQMVF) and therefore a foundation for a fair and
standardized comparison for the community was introduced. Besides supporting the unsuper-
vised anomaly detection research community, we also believe that our study and our imple-
mentation is useful for researchers from neighboring fields. Now, it is easy to apply the
discussed methods on new data. The broad variety of our evaluation datasets might guide for
appropriate algorithm selection in new application domains.

In particular, our findings include that local anomaly detection algorithms, such as LOF,
COF, INFLO and LoOP tend to perform poorly on datasets containing global anomalies by
generating many false positives. The usage of these algorithms should be avoided if it is known
that the task is to detect global anomalies only. On the contrary, global anomaly detection algo-
rithms perform at least average on local problems. This yields in our recommendation to select
a global anomaly detection algorithm if there is no further knowledge about the nature of
anomalies in the dataset to be analyzed.

As a general detection performance result, we can conclude that nearest-neighbor based
algorithms perform better in most cases when compared to clustering algorithms. Also, the sta-
bility concerning a not-perfect choice of k is much higher for the nearest-neighbor based meth-
ods. The reason for the higher variance in clustering-based algorithms is very likely due to the
non-deterministic nature of the underlying k-means clustering algorithm. Despite of this

Table 5. Comparing the computation time of the different algorithm show huge differences, especially for the larger datasets. The unit of the table is
seconds for the first nine columns and minutes for the last dataset (kdd99).

Alg. b-cancer pen-global pen-local letter speech satellite thyroid shuttle aloi kdd99

k-NN <0.1 <0.1 2.4 0.3 5.7 2.0 2.6 106 166 538

kth-NN <0.1 <0.1 2.4 0.3 5.8 2.0 2.6 105 165 538

LOF <0.1 <0.1 2.4 0.3 5.8 2.0 2.7 105 165 538

LOF-UB <0.1 <0.1 2.6 0.3 5.9 2.1 2.8 107 167 539

COF <0.1 0.1 2.8 0.5 9.0 2.5 3.1 107 169 539

INFLO <0.1 <0.1 2.4 0.3 5.8 2.0 2.6 105 165 538

LoOP <0.1 <0.1 2.5 0.3 5.8 2.0 2.6 105 165 538

LOCI 18 240 — 2572 25740 — — — — —

aLOCI 0.5 1.8 90 12.7 9.5 56 30 73 1137 298

CBLOF/LDCOF 10 <0.1 0.1 1.5 0.6 24.8 4.0 1.0 6.9 39.1 5.01

CBLOF/LDCOF 50 0.1 0.2 3.7 5.9 24.7 5.2 4.4 10.3 74.6 16.14

CMGOS-Red 10 0.5 0.2 1.7 1.1 82 4.6 1.2 7.0 40 5.15

CMGOS-Red 50 0.1 0.5 4.3 1.7 49 8.2 4.6 10.6 77 16.25

CMGOS-Reg 10 0.4 0.2 1.7 1.1 83 4.6 1.3 7.0 40 5.19

CMGOS-Reg 50 0.1 0.5 4.3 1.7 49 8.1 5.4 10.6 77 16.29

CMGOS-MCD 10 159 211 863 759 — 3821 1967 354 3003 491

CMGOS-MCD 50 735 519 1045 1441 — 4041 4159 1525 10933 8745

HBOS <0.1 <0.1 <0.1 <0.1 0.5 <0.1 <0.1 <0.1 0.4 0.06

rPCA <0.1 <0.1 0.2 <0.1 9.2 0.1 <0.1 0.3 1.5 21.8

oc-SVM 0.3 0.5 31 8.5 807 28 26 19639 59531 5480

η-oc-SVM 0.3 0.4 70 8.2 745 24 27 19087 58559 3310

doi:10.1371/journal.pone.0152173.t005
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disadvantage, clustering-based algorithms have a lower computation time. As a conclusion, we
recommend to prefer nearest-neighbor based algorithms if computation time is not an issue. If
a faster computation is required for large datasets, for example in a near real-time setting, clus-
tering-based anomaly detection might be the method of choice. For small datasets, clustering-
based methods should be avoided.

Among the nearest-neighbor based methods, the global k-NN algorithm is a good candidate
on average. Although LoOP was the best performing nearest-neighbor based algorithm on four
datasets, it unfortunately fails significantly one some datasets. Especially for the global anomaly
detection problems this algorithm should be totally avoided. Besides our recommendation for
k-NN, LOF is also a good candidate if it is previously known that the anomaly detection prob-
lem to be solved involves local anomalies.

Concerning the clustering-based algorithms, the simple uCBLOF algorithm also shows on
average good performance for all datasets, illustrating that a more sophisticated and compute
intense density estimation is not necessarily required. In terms of computational complexity,
clustering-based algorithms are faster than their nearest-neighbor competitors. However, in
practice, we advice to restart the underlying k-means algorithm multiple times in order to
obtain a stable clustering outcome. This procedure unfortunately often takes away the advan-
tage of the theoretical speedup, which leads on the small datasets even to longer runtimes com-
pared with the nearest-neighbor based algorithms. Nevertheless, when processing speed is very
important or a clustering model can be updated in a data streaming application, a clustering-
based algorithm might be used. Besides our recommendation for uCBLOF, CMGOS-Reg also
seems to perform reliable on most of the datasets. On the contrary, the original CBLOF algo-
rithm should be avoided due to an algorithm design flaw. Also, the CMGOS with the subspace-
based MCD density estimation should not be the first choice, since the density estimation is
too slow and detection performance is worse.

The statistical algorithm HBOS, which assumes independence of the features, surprisingly
showed very good results in our evaluation. It is even the best performing algorithm on four

Table 6. Recommendations for algorithm selection.Qualitatively judgments are given from very bad (− −) over average (o) to very good (++).

Alg. accuracy deterministic sensitivity speed global detection

k-NN ++ ++ + o ++

LOF ++ ++ + o − −

COF − ++ + o − −

INFLO o ++ + o − −

LoOP ++ ++ + o − −

LOCI o ++ ++ − − − −

aLOCI − − − − − o −

CBLOF − − o o + − −

uCBLOF ++ o o + ++

LDCOF − o o + o

CMGOS-Red o o o + −

CMGOS-Reg o o o + +

CMGOS-MCD − − − − − o

HBOS + ++ o ++ ++

rPCA o ++ + + o

oc-SVM o + + − − +

η-oc-SVM o + + − − o

doi:10.1371/journal.pone.0152173.t006
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out of our 10 datasets. Due to the very fast computation time, especially for large datasets, we
highly recommend to give it a try on large-scale datasets when looking for global anomalies.

One dataset with 400 dimensions was a big challenge for all of the algorithms, most likely
due to the curse of dimensionality. In this context, only nearest-neighbor based algorithms
with a very small k< 5 were useful at all. Since in unsupervised anomaly detection k can typi-
cally not be determined, we might conclude that unsupervised anomaly detection fails on such
a high number of dimensions.

As a general summary for algorithm selection, we recommend to use nearest-neighbor
based methods, in particular k-NN for global tasks and LOF for local tasks instead of cluster-
ing-based methods. If computation time is essential, HBOS is a good candidate, especially for
larger datasets. A special attention should be paid to the nature of the dataset when applying
local algorithms, and if local anomalies are of interest at all in this case. We have summarized
our recommendations for algorithm selection in Table 6 with respect to the anomaly detection
performance (accuracy), the stability of the scoring (deterministic), the sensitivity to parame-
ters, the computation time for larger datasets (speed) and whether the algorithm is applicable
for datasets having global anomalies only. Please note, that the judgments in the table assume
that the general recommendations as given above are followed.
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