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Summary

Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by

carnivorousarthropods suchasparasitoids. Theeffects of plant volatiles onparasitoidshavebeen

well characterisedat small spatial scales, but little researchhas beendoneon their effects at larger

spatial scales. The spatial matrix of volatiles (‘volatile mosaic’) within which parasitoids locate

their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting

plants, the concentration, chemical composition and breakdown of the emitted HIPV blends,

and by environmental factors such as wind, turbulence and vegetation that affect transport and

mixing of odour plumes. The volatile mosaic may be exploited differentially by different

parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the

physical ability to move towards the source. Understanding how HIPVs influence parasitoids at

larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest

management in agriculture. However, there is a large gap in our knowledge on how volatiles

influence the process of host location by parasitoids at the landscape scale. Future studies should

bridge the gap between the chemical and behavioural ecology of tritrophic interactions and

landscape ecology.

Introduction

Information plays an important role in behavioural choices of
individuals, and consequently influences the spatial distribution of
populations on larger scales (Vet, 2001; Lof et al., 2008; Vinatier
et al., 2011). Animals have evolved many sensory systems for
perceiving cues from their environment, such as vision, hearing, smell
and sensing of vibration, and they use a combination of these tomake
foraging decisions (Roitberg & Gillespie, 2014; Schellhorn et al.,
2014). In insects, olfaction is the most important sensory system
driving behaviour; it influences, among others, food searching, mate
finding, avoidance of enemies and competition (Lima &Dill, 1990;
Schoonhoven et al., 2005). However, little is known about the
mechanisms underlying the interactions between insects and their
odorous environment in the context of the spatial scales atwhich these
mechanisms need to operate under field conditions.

Herbivore-inducedplant volatiles (HIPVs) constitute important
cues for parasitoids and predators to find prey or hosts (Vet &

Dicke, 1992; Hare, 2011). Undamaged plants emit relatively low
levels of volatiles. Upon herbivory, plants emit an induced blend of
volatiles of different chemical classes (Fig. 1), produced through a
variety of biosynthetic pathways. This blend is used by predators
and parasitoids as a reliable and well-detectable cue to find
herbivore-infested plants (Dicke & Baldwin, 2010). While
tritrophic interactions mediated by plant volatiles have been
extensively studied in the laboratory and small-scale field experi-
ments (Mumm & Dicke, 2010), many questions remain unan-
swered about how these interactions unfold beyond the plot/field
scale in agroecosystems (James & Price, 2004; Simpson et al.,
2011).

HIPVs are emitted from plant sources that are heterogeneously
distributed at various spatial scales. Individual plants of different
species may be induced to different degrees, and by different
inducing herbivores, resulting in a complex spatial mosaic of
volatile blends. Emitted HIPVs will be transported by wind and
turbulence, resulting in mixing of multiple volatile blends, while
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chemical breakdown will happen at the same time. The com-
pounding of spatially and temporally heterogeneous emission and
turbulent transport results in a dynamic and heterogeneous three-
dimensional chemical environment, which we here call the ‘volatile
mosaic’. Parasitoids and predators may be able to derive important
information fromHIPVs within this volatile mosaic, but they may
be limited in their ability to detectHIPVs at larger spatial scales due
to chemical breakdown of chemical constituents, and mixing of
odours fromdifferent sources. Furthermore, theymay be limited in
their ability to initiate directed movement towards these potential
sources of hosts/prey, for example ifwind speed exceeds the speed of
movement. Therefore, the interactions between carnivorous insects
and the volatile mosaic are likely to be scale-dependent, such that
different processes may be relevant at different spatial scales.

In this review, we argue that volatile mosaics, by influencing
parasitoid choices and, consequently, parasitoid movement, may
be a helpful addition to the current suite of landscape ecological
concepts, such as structural complexity, fragmentation and con-
nectivity. Volatile mosaics may allow for a more mechanistic
understanding of the movement and distribution patterns of
organisms that are particularly driven by olfactory cues. Although
many carnivorous arthropods use volatile information, we limit our
review to interactions between plants, herbivores and primary
parasitoids, which lay their eggs in herbivorous hosts. The use of
information from their surroundings by primary parasitoids has
been extensively studied (van Alphen et al., 2003), and their fitness
is closely linked to their ability to use volatile information to find
hosts (Thiel & Hoffmeister, 2009). We first address the physical
characteristics of volatile mosaics and the factors that shape them.
Second, we provide information on how parasitoids perceive their

environment and how their physical and behavioural traits might
influence the extent to which HIPVs are used in a landscape
context. Third, we discuss three different spatial scales at which
volatile mosaics may influence parasitoid movement and distribu-
tion, namely the plant scale, patch scale and landscape scale.
Finally, we discuss future research directions, open questions and
potential applications of HIPVs for strengthening biological
control in agricultural systems.

Formation of the volatile mosaic and insect
behavioural traits

Volatiles emitted by plants form plumes that consist of odour
filaments (Murlis et al., 1992; Beyaert & Hilker, 2014). These
plumes provide information to parasitoids that search for their
herbivorous hosts (Dicke&Baldwin, 2010).How this information
can be used by parasitoids depends on the sender (the plant), the
processes affecting the shape and spatial extent of odour plumes in
the environment, and the ability of the receiver (the parasitoid) to
perceive the cue (Fig. 2). In this section we discuss these three
aspects, of which the first two form the volatilemosaic and the third
determines how the volatile mosaic is perceived by the parasitoid.

The production and release of a blend of volatiles starts at the
level of the plant. Plant responses to herbivory have been extensively
investigated, highlighting that the blend composition may vary
with herbivore species, density and herbivore instar (D’Alessandro
& Turlings, 2006; Mumm & Dicke, 2010; Rowen & Kaplan,
2016), abiotic conditions (Loreto et al., 2014) and plant species,
cultivar or even genotype (Degen et al., 2004; Poelman et al., 2009;
Gols et al., 2011).
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Fig. 1 Herbivore-induced plant volatiles
(HIPVs) consist of chemicals from different
chemical classes. Examples are provided for
several different classes of compounds that
can be found in HIPV blends.
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After the odour blend leaves the plant as part of a plume, air
currents determine the direction and speed at which the plume
travels (Riffell et al., 2008). Volatile compounds in the atmosphere
can gradually degrade, for example by interactions with reactive
chemicals such as ozone (Blande et al., 2014). The degradation of
compounds can alter the chemical composition of the blend by
changing the ratio of compounds within the blend, and/or
generating new breakdown products (�Simpraga et al., 2016).With
increasing distance from the source, a plume becomes more
dispersed and probably more difficult to be tracked by parasitoids.
These processes ultimately determine the shape, concentration and
spatial extent of the odour plume, as well as the composition of the
odour filaments, which can alter the information available to
insects. In a landscape setting, insects are confronted with
assemblages of plants producing odour plumes that differ in blend,
strength and size. Limited knowledge is available on the responses
of parasitoids to mixed odour plumes (Dicke et al., 2003), but
mixing of plumes may give rise to complex interactions such as
plume masking or plume amplification. For instance, when moths
are exposed to a mixture of pheromone and plant volatiles, the
capacity of pheromone detection is hampered, probably because of
a masking effect of plant volatiles (Deisig et al., 2014).

Volatile mosaics consist of assemblages of odour plumes that
are scattered across space and can be influenced by the
vegetation structure of the landscape. For instance, odour
plumes in open fields and forests have different shapes and sizes,
possibly due to the differences in wind speed and turbulence in
these contrasting habitats (Murlis et al., 2000). Increasing plant
diversity is expected to increase the structural complexity of
vegetation, but can also increase complexity of the volatile
mosaic by mixing of odour plumes (Randlkofer et al., 2010b).
The complex interaction between the spatial arrangement of
plant communities in the wider landscape context and
environmental factors leads to a bewildering array of emerging
patterns, which are likely to change rapidly over time. Yet,
parasitoids have to deal with this complexity to obtain olfactory
information about the location of their hosts.

The perception of the volatile mosaic by parasitoids is
determined by their ability to detect and interpret volatiles.
Sensory perception of volatiles by insects relies on olfactory sensilla,
primarily located on the antennae. These sensilla are innervated by

olfactory receptor neurons, and a wide variety of receptor neuron
types can be found among insect taxa (Martin et al., 2011; Reinecke
& Hilker, 2014). Parasitoid species may differ in their ability to
detect volatile compounds, which impacts their ability to discrim-
inate between volatile blends, and the distance fromwhich they can
track volatile-emitting plants (Gouinguen�e et al., 2005). The
minimum volatile concentration eliciting a behavioural response
may vary between parasitoid species. We expect a positive
correlation between sensitivity of a parasitoid species to a particular
volatile blend and the distance from which the blend can be
detected from the source (as chemical breakdown and dilution due
to turbulence have reduced the volatile concentration and altered
the composition). Detection of odour plumes in a three-
dimensional environment is complicated because of turbulence
and chemical degradation of the plumes over larger distances.
Complex navigational strategies are used by insects to locate the
source of the odour plume, for instance flying in a zigzagging
fashion upwind towards the source of the volatiles (Kaiser et al.,
1994; Kerguelen & Card�e, 1997; Card�e & Willis, 2008). When
following odour plumes, insects may change their navigational
strategy at certain distances from the odour source (Willis et al.,
1991; Bau & Card�e, 2015).

Detection ability is not in itself sufficient to locate a host.
Parasitoids should also have the physical ability for directed
movement to search and locate the host if they detect HIPVs. We
expect flight capacity to influence the scale over which a volatile
mosaic is explored and the spatial grain of searching. At low flight
capacity, a parasitoid may intensively explore small patches of
plants, and may depend on passive dispersal for finding patches
further away, while a parasitoid with good capacity for directed
flight may visit a sequence of interconnected resource patches by
flying upwind in the direction of an odour source. There are several
factors influencing the movement capacity of insects. In general,
there is a positive correlation between the size of a parasitoid and
their movement capacity (Roland&Taylor, 1997). However, even
individuals within the same species may exhibit different modes of
movement, resulting in displacement across distances ranging from
metres to kilometres (Kristensen et al., 2013). Host-specific
parasitoids may be more mobile and sensitive to specific volatiles
than are parasitoids with a wider host range (van Nouhuys &
Ehrnsten, 2004).

Sender Receiver

Air currents

Structure

Degradation

Fig. 2 The sender (plant) emits herbivore-
induced volatiles, which disperse as plumes in
the environment as a result of air movement.
Physical barriers such as vegetation further
modulate the movement pattern of the
volatile plume. With increasing distance from
the source, the plume becomes more
fragmented as a result of degradation, by
reactions with other compounds in the
atmosphere anddilution as airflow spreads the
plume. Depending on the distance from the
source, and traits of the receiver (insect
parasitoid), the receiver may be able to follow
the odour plume to the source.
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The spatial scales of parasitoid interactions with plant
volatiles

A parasitoid female emerging from her cocoon has only limited
time to explore the environment and obtain information on patch
quality. Perceptual range, resulting from perception sensitivity and
odour dispersal, will influence host finding when hosts are
heterogeneously distributed. However, not much is known about
odour perceptual range of parasitoids in field situations, or whether
this range differs between species. Some studies with artificial
volatile sources and moths show antennal responses to odour
sources in the field up to 60 m from the odour sources, depending
on the number of odour sources (Andersson et al., 2013). The
distance over which odours are perceived also depends on the
landscape, which determines how far odours travel. For example,
tsetse flies respond to host odours from a much larger distance
(60 m) in woodlands than in open fields (20 m), suggesting that
odour plumes stay intact longer in these vegetation structures
(Voskamp et al., 1998). Weather also affects perceptual range by
influencing odour plume movement. While plants can convey
information on attack by herbivores (Turlings et al., 1990; Vet &
Dicke, 1992), the detection and interpretation of these cues by
parasitoids may differ depending on the distance of the parasitoid
to the HIPV source, although empirical evidence for this is lacking
(Puente et al., 2008). Depending on the spatial scale, different
factors may be of overriding importance. Here, we will review the
most important factors affecting the response of parasitoids to
HIPVs at the plant, patch and landscape scale.

Plant scale

HIPV release at the plant scale is the basis of the formation of the
volatile mosaic, which can bemodulated by a wide range of factors,
including plant species, plant genotype, plant age, herbivore
species, attack severity, abiotic factors or combinations of these
(Fig. 3a). The interplay of these biotic and abiotic factors results in
specific outcomes of tritrophic interactions at the plant scale in
which volatiles may convey reliable information to parasitoids
about the infestation of plants byherbivores, while in other cases the
volatile cues are less specific (de Rijk et al., 2013).

Herbivore-damaged plants emit a blend that is qualitatively and/
or quantitatively different from the blend emitted when the plant is
not damaged or mechanically damaged (Turlings et al., 1990;
Ponzio et al., 2014). As a consequence, plants damaged by host
herbivores attract more parasitoids than do uninfested or mechan-
ically damaged plants (Turlings et al., 1990; Geervliet et al., 1994;
Potting et al., 1995). HIPV emission is positively related to the
severity of herbivore damage and herbivore load (but see Shiojiri
et al., 2010) and, consequently, more heavily infested plants are
more attractive to parasitoids (Girling et al., 2011). Phloem-
feeding herbivores generally induce lower amounts of volatiles
compared with chewing herbivores (Rowen & Kaplan, 2016),
possibly because of the limited tissue damage caused by phloem
feeders. Besides affecting initial parasitoid attraction to a plant,
HIPVs can further stimulate searching behaviour when the
parasitoid has arrived on the plant (Uefune et al., 2012).

Plant traits can modulate HIPV release and plant volatile
emission fluctuates throughout the day (Loughrin et al., 1994;
Arimura et al., 2008), highlighting the dynamic nature of volatile
mosaics. Plant species emit specific volatile blends upon attack by
the same herbivore species (van den Boom et al., 2004). Genotypes
or varieties of the same plant species may differ in the intensity of
volatile emission (Degen et al., 2004; Poelman et al., 2009; Gols
et al., 2011), whichmay result in contrasting parasitism rates under
field conditions (Poelman et al., 2009). Additional infestation of
the plant by nonhost herbivores may alter HIPV emission and,
consequently, parasitoid attraction (de Rijk et al., 2013; Chabaane
et al., 2015; Ponzio et al., 2016). Different nonhost-herbivore
species may vary in the degree to which their attack alters HIPV
blends and influences parasitoid searching behaviour (Desurmont
et al., 2014; deRijk et al., 2016).Hence, the contribution of a single
plant to the volatile mosaic depends on the attacking insects, both
hosts and nonhosts.

Patch scale

At the patch scale, the complexity of plant communities contributes
to the complexity of the volatile mosaic (Fig. 3b). Abiotic
conditions, such as wind, influence the distribution of volatiles
(Loreto et al., 2014; Li et al., 2016) and vegetation structure may
further modulate the dispersal of volatile blends within the
landscape. The variation in HIPV emission between and within
plant species is likely to shape volatile blends in complex ways
(Degen et al., 2004; Poelman et al., 2009; Gols et al., 2011), which
then changes the volatile mosaic depending on the neighbouring
plants and the herbivore community that is present on these plants.
The effect of plant diversity and habitat complexity on parasitoid
behaviour has been extensively studied (W€aschke et al., 2014;
Kruidhof et al., 2015). For example, Brassica nigra plants in
unmown grassland attracted fewer parasitoids than those in mown
grassland or bare soil (Bezemer et al., 2010). Parasitoids foundhost-
infested plants faster in a Brussels sprouts monoculture compared
to a Brussels sprout–barley intercrop (Bukovinszky et al., 2007). It
is unclear whether these differences are caused by volatile masking,
mixing of volatiles, or obstruction of visual or olfactory cues by the
vegetation. Several effects of background odours on parasitoid
behaviour in a patch have been described. If a parasitoid is unable to
perceive a certain compound or blend, it is likely that this
compound does not alter its behaviour in a patch (Schr€oder &
Hilker, 2008). A background odour might attenuate a behavioural
response if it masks the target odour, or enhance the response if it
complements the signal of the HIPV-emitting plant (Schr€oder &
Hilker, 2008).

The induction of HIPVs in neighbouring plants infested with
nonhost herbivores can stimulate the searching efficiency of
parasitoids by creating a contrasting HIPV blend that can help
the parasitoid to identify the HIPV blend of host-infested plants
(Soler et al., 2007; de Rijk et al., 2013). Yet, this effect may depend
on the herbivore species inducing the neighbouring plant. For
instance, discriminating hosts fromnonhosts on the basis ofHIPVs
is more difficult for parasitoids when the herbivores are from the
same feeding guild than from a different feeding guild (Geervliet
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et al., 1996; de Rijk et al., 2013). The attractiveness of neighbour-
ing plants can also influence the searching behaviour of parasitoids
on host-infested plants. When an attractive host plant was
surrounded by less attractive, but still attractive nonhost plants,
the searching efficiency on the host plant decreased, suggesting that
the perception of the patch quality exceeds the scale of a single plant
(Perfecto & Vet, 2003). HIPVs can attract parasitoids to host
patches, and may even be used to assess patch quality. Aphid
parasitoids thatwere previously exposed to a plantwith a high aphid
density spent less time on plants with few or no aphids than
parasitoids that were previously exposed to a plant with a low aphid
density. This was independent of actual presence of aphids during

the exposure period, suggesting that plant volatiles were used by the
parasitoids to assess patch quality (Tentelier & Fauvergue, 2007).

Theoretical studies with plume models suggest that odour
sources of which the plumes can be perceived at larger distances
attract more insects than those than those that can be perceived at
only a short distance from the source (Manoukis et al., 2014).
Long-distance spread of odour plumes facilitated host location if
hosts were sparsely distributed, while short- or long-distance spread
of plumes equally facilitated host location if hosts were dense
(Puente et al., 2008). The release of the syntheticHIPV component
phenylethyl alcohol influenced the community composition and
abundance of a range of arthropod taxa (both second and third

Wind

(a) Plant scale

(b) Patch scale

(c) Landscape scale

Fig. 3 Herbivore-induced plant volatiles
(HIPVs) on multiple spatial scales. (a) A plant
can respond to herbivory with the production
of HIPVs. The composition of these volatile
blends is affected by many on-plant factors,
such as herbivore identity, herbivore feeding
guild, herbivore community and plant species
or traits. Parasitoid responses may vary with
variation in HIPV blends. (b) In nature, the
plant is part of a larger community of plants
and their associated herbivores. Therefore,
parasitoids search for their hosts in patches
where a large variety of odour plumes shapes
the information on presence of the host,
representing a dynamic volatile mosaic. (c) At
the landscape scale, different habitats can
present different volatile mosaics and distance
between these habitats becomes important.
Landscape structure as determined by
opennessof thevegetationandplantdiversity,
as well as weather conditions such as wind
direction, affect how far odour plumes travel.
The ability of the parasitoid to perceive HIPVs
emanating from patches further away and to
move across these habitats influences
movement patterns and resulting population
distribution.
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trophic level) up to at least 8 m away, both positively (by attraction)
and negatively (by repellence) in soybean fields (Braasch&Kaplan,
2012). By contrast, Mallinger et al. (2011) found that such effects
were more localised and ceased at 1.5 m from the source. These
spatial characteristics of the response to odour plumes are likely to
be both plant- and insect-species specific.

Landscape scale

Landscapes are composed of a mosaic of vegetation patches, each
consisting of plants that may produce HIPV plumes. However,
only a few studies have examined how HIPVs influence the
movement of parasitoids at a landscape scale and howHIPVs from
different patches influence the distribution of parasitoids across a
landscape (James & Price, 2004; Simpson et al., 2011). The study
of HIPVs in a landscape context presents a challenge because of the
difficulty of tracking parasitoid movement at large spatial scales,
and because HIPV plumes are not visible and, therefore, hard to
assess in the field. Indeed, most landscape-scale studies infer
parasitoidmovement via indirectmethods, such as analysis ofmeta-
population structure, rather than by assessing the movement paths
of individual parasitoids (Schellhorn et al., 2014). Nevertheless,
considering HIPV plumes may reveal important insights into the
movement and distribution patterns of parasitoids at the landscape
scale.

Landscape-ecological studies have shown that forest edges,
proportion semi-natural area or landscape simplification can have
profound impacts on the distribution of parasitoids and their
impact on herbivore populations (Pollard & Holland, 2006;
Bianchi et al., 2008;Woltz et al., 2012;Rusch et al., 2016), and that
parasitoids respond to the landscape context at spatial scales ranging
from several hundred metres to kilometres (Thies et al., 2003;
Bianchi et al., 2008).While it has been shown that habitat types and
vegetation structures may foster or impede parasitoid movement
(Cronin, 2003a,b), it is not clear towhat extentHIPVs play a role in
this. The volatile mosaic can be considered as an additional
information layer on top of the structural vegetation pattern.
Depending on the spatial arrangement of vegetation patches
emitting HIPVs and meteorological conditions that determine the
shape and direction of odour plumes, the volatile mosaic may
facilitate parasitoid movement (e.g. when nearby odour plumes
function as stepping stones) or interfere with it (e.g. when attractive
odour plumes aremasked by less attractive plumes), in similar ways
as found for vegetation structures (Tscharntke & Brandl, 2004)
(Fig. 3c). While the spatial vegetation template varies at a seasonal
time scale, the volatile mosaic is much more dynamic and may
change within seconds to minutes depending on wind conditions,
turbulence and vegetation structure.

Understanding the interactions between parasitoids, herbivores
and plants in a volatile-mosaic context requires the integration of
various factors that have been addressed in this review. In a
landscape, parasitoids need to find all ecological requisites,
including food resources, hosts and mates, and they need to
allocate time to finding these resources at appropriate times of their
lives (Lewis et al., 1998; Landis et al., 2000). The perception of the
volatile mosaic may be very different depending on the scale and

mode of movement of the parasitoid. For instance, volatile mosaics
may be perceived as fragmented by parasitoids with a limited
mobility, while less so by parasitoids with a large dispersal capacity
(vanNouhuys, 2005). Further work is needed to unravel the factors
and mechanisms that underlie the parasitoid movement and host
searching at the landscape scale.

Future perspectives

The previous sections show that knowledge of parasitoid responses
to HIPVs within the volatile mosaic decreases with increasing
spatial scale. At present, there are no accurate data on the spatial
extent of HIPV plumes. Beyond a critical distance, it can be
expected that HIPV plumes are simply too diluted or dispersed by
turbulence or chemically degraded, so that no reliable information
can be derived from them by parasitoids. We hypothesise that
HIPV plumes may provide reliable cues for parasitoids up to a
distance of tens of metres, in line with studies on flies and moths
(Voskamp et al., 1998; Andersson et al., 2013) and parasitoids (Y.
Aartsma, pers. obs.). At further distances other cues will have
overriding importance. It has been proposed that herbivores,
pollinators and parasitoids use general ‘habitat cues’ to find
locations that potentially contain resources, and then switch to
more specific cues within this habitat (Vinson, 1976; Webster &
Card�e, 2016). Indeed, in no-choice situations or choice situations
against nonhost plant species, parasitoids often also respond to
volatiles from undamaged plants, indicating that in the absence of
host-specific HIPVs, more general cues are used (Gohole et al.,
2005; Moraes et al., 2008). Hierarchical plume switching is a
possible mechanism by which flying insects following a long-range
habitat cue might switch to following more reliable short-range
cues (Beyaert & Hilker, 2014). A better understanding of the
functioning of HIPVs in realistic field conditions requires charac-
terisation of the distance over which odour plumes can attract
parasitoids in different plant–herbivore combinations.

Assessing the response of parasitoids to volatile mosaics is
methodologically challenging, especially at the field scale and
beyond.Here, we propose three potential approaches that integrate
approaches from chemical ecology and landscape ecology that may
foster progress in this field. First, the mechanistic basis of the
volatile mosaic can be studied by collecting HIPV blends under
field conditions in habitats with different structural complexity. By
presenting field-collected or synthetic HIPV blends to parasitoids
and recording their behaviour, predictions for parasitoid behaviour
anddistribution in the field can bemade. Parasitoids can be released
at different distances from a source and recaptured near the source
to determine the distance at which parasitoids respond in the field
(Papaj &Vet, 1990). Furthermore, electro-antennographic (EAG)
measurements in the field can be used to study inmore detail under
which conditions HIPV blends are still distinguishable against a
background (Milli et al., 1997; Andersson et al., 2013; Misztal,
2016). Second, the volatile mosaic may be studied at a landscape
scale by assessing the spatial distribution of parasitoids in
landscapes with different numbers and spatial arrangements of
HIPV sources. In addition, to assess the effect of anHIPV source in
specific volatile-mosaic contexts, the response of parasitoids could
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be studied by introducing standardised HIPV sources in different
habitat patches. The effect of the strength of HIPV cues could
further be assessed in detail by using plant phenotypes that clearly
differ in HIPV emissions (Poelman et al., 2009). We hypothesise
that variation in relative volatile emission rate and associated
variation in attraction of parasitoids and predators among plant
species/genotypes are strongly dependent on the volatile mosaic in
the surrounding landscape. Third, by studying different parasitoid
species with well-known functional traits, such as threshold HIPV
concentrations to initiate host-searching behaviour, important new
insights may be acquired about how parasitoid distribution
patterns in realistic landscape settings are shaped by the interaction
between species traits and the volatile mosaic. We hypothesise that
parasitoid species traits such as size and dispersal capacity influence
the spatial scale and landscape context at which they respond to
HIPVs. Finally, simulation models may be used to integrate and
extend information about parasitoid responses to volatile mosaics.
For instance, simulations suggest that wind direction and HIPV
concentration are important factors determining the spatial
distribution of HIPVs (Kuroyanagi et al., 2012). Such modelling
studies may generate hypotheses that can be experimentally tested
in field experiments (Manoukis et al., 2014).

Interactions between parasitoids and the volatile mosaic should
be studied at relevant spatial scales. These relevant spatial scalesmay
be species-specific because parasitoids differ in dispersal capacity
and search behaviour, and they may also depend on vegetation
structure and meteorological conditions. Parasitoids with a low
dispersal capacity may lack the ability for directed movement to
distant targets and may therefore be less responsive to cues from
longer distances, while larger parasitoids with a good capacity for
directed searchmay bemore sensitive to long-range cues.However,
for many parasitoids knowledge about functional spatial scales is
limited.

Finally, it is important to recognise that volatile cues are not
the only information available for parasitoids to find their hosts,
and that host searching is only a part of the daily activities.
Visual and vibrational cues are also used in host finding (Fischer
et al., 2001), although these are considered short-range cues
(V€olkl, 2000). Moreover, vegetation structure can influence
parasitoid movement patterns, not only through the volatile
mosaic (Randlkofer et al., 2010b), but also by visual obstruc-
tion, physical increase of the searching area (Gols et al., 2005;
Randlkofer et al., 2010a), or effects on parasitoid flight capacity.
In field situations, insects are likely to use multiple modes of
information acquisition (Kulahci et al., 2008). Our understand-
ing of the interactions between parasitoids and volatile mosaics
can benefit from a better integration of chemical, behavioural
and landscape ecological approaches.

Applications

In natural systems, parasitoids and predators keep populations of
herbivorous insects at low levels, and they can have similar impacts
in agriculture (Ramsden et al., 2016). Attracting natural enemies to
crop fields therefore would be beneficial for farmers. There are
indications that as a consequence of crop domestication and

reliance on insecticides, many crops have reduced defences against
herbivore attack and reduced attractiveness to natural enemies
compared to their wild relatives (Chen et al., 2015). However, a
recent meta-analysis suggests that emission rates of HIPVs,
especially green leaf volatiles and sesquiterpenes, are actually higher
in crops than in wild plant species (Rowen & Kaplan, 2016). The
complexity of volatile blends from domesticated crops is reduced as
compared to wild species, whichmaymean that compounds which
are important in attracting natural enemies are limiting (Rowen &
Kaplan, 2016). Modern plant breeding mainly focuses on direct
mechanisms of resistance, and little attention is paid to the
development of improved indirect defence mechanisms, for
example through natural enemy attraction by plant volatiles
(
��Ahman et al., 2010).
Another challenge for the application of HIPVs in pest manage-

ment strategies is that the reported effectiveness of HIPVs is mixed.
Success stories include the ‘push–pull’ system developed for maize
production (Khan et al., 1997), and the effects of white cabbage
varieties that are more attractive to parasitoids in the laboratory in
combinationwith higher parasitism rate in the field (Poelman et al.,
2009). However, other studies show that parasitoid searching
activity and host finding success are increased in laboratory studies,
but that these changes do not result in reduced pest populations in
thefield (Halitschke et al., 2008; vonM�erey et al., 2012;Bruce et al.,
2015). This illustrates the importance of field studies in addition to
detailed behavioural studies in the laboratory.

For biological control, it is important that crops can attract
sufficient natural enemies for effective top-down control of
herbivore populations. There have been mixed results with
engineering constitutive release of plant volatiles or alarm
pheromones (Bruce et al., 2015) and simulations show that HIPVs
as cues donot increase parasitism rateswhen plants emit them in the
absence of hosts of parasitoids (Kaplan& Lewis, 2015). Enhancing
induced crop attractiveness (by triggering a higher HIPV emission
upon herbivory) might be a more useful approach to increase
attraction of natural enemies within as well as into the crop
(Kappers et al., 2011). Also, monoculture cropping systems are
often very simplified and exposed to frequent disturbances, and
they therefore rely on recruitment of natural enemies from the
surrounding habitat (Wissinger, 1997). In addition, natural
enemies may rely on floral resources that can only be found outside
the field (but see Vollhardt et al., 2008).

Crops with enhanced HIPV emission levels may reduce
natural enemy populations in neighbouring crops (Braasch &
Kaplan, 2012). Indeed, parasitoid redistribution on a local scale
(8 m) was observed after volatile lures were used, resulting in
increased braconid parasitoid densities near the lure, but lower
densities in plots further away from the lure (Braasch & Kaplan,
2012). Other arthropod taxa, however, did not show such
natural enemy depletion responses, and it is unclear what the
consequences will be at larger spatial scales. This suggests that
the implementation of strategies to enhance natural enemy
recruitment by crops with enhanced HIPV emission must go
hand in hand with habitat management to conserve and
increase natural enemy populations near crops (Landis et al.,
2000; Tscharntke et al., 2005).
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Conclusions

In the last few decades we have learned a lot about HIPVs in
terms of (bio)chemistry, plant physiology and behavioural
ecology of insect responses to HIPVs (Turlings et al., 1990;
Mumm & Dicke, 2010). The focus of this research was
particularly on interactions between individual plants and a
single herbivore and the response of individual parasitoids at the
plant level. In more recent years, research has addressed the
effects of HIPVs within a community context, again particularly
at the plant level (Desurmont et al., 2014; Stam et al., 2014).
Despite exciting advances in research on responses of plants to
herbivory, many important questions remain unanswered about
the consequences of HIPV emissions for parasitoid foraging
behaviour and host–parasitoid population dynamics in field or
landscape settings. These questions, relating to the spatial scale
at which HIPVs operate, are crucial for our understanding of
tritrophic interactions and possible applications of volatiles in
agricultural pest management (Gish et al., 2015). Research on
HIPVs will need to consider effects at larger spatial scales if it is
to assess the effects on populations in a spatial context and
contribute to durable pest management in an agricultural
context. Current mechanistic understanding of the effect of
plant volatiles on insect movement may be used to formulate
empirically testable hypotheses on the role of HIPVs in
ecological processes at the larger spatial scales that are important
for landscape ecology and agricultural pest management.
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