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There are many challenges to quantifying and evaluating the media impact on the control of emerging
infectious diseases. We modeled such media impacts using a piecewise smooth function depending on both
the case number and its rate of change. The proposed model was then converted into a switching system,
with the switching surface determined by a functional relationship between susceptible populations and
different subgroups of infectives. By parameterizing the proposed model with the 2009 A/HIN1 influenza
outbreak data in the Shaanxi province of China, we observed that media impact switched off almost as the
epidemic peaked. Our analysis implies that media coverage significantly delayed the epidemic’s peak and
decreased the severity of the outbreak. Moreover, media impacts are not always effective in lowering the
disease transmission during the entire outbreak, but switch on and off in a highly nonlinear fashion with the
greatest effect during the early stage of the outbreak. The finding draws the attention to the important role of
informing the public about ‘the rate of change of case numbers’ rather than ‘the absolute number of cases’ to
alter behavioral changes, through a self-adaptive media impact switching on and off, for better control of
disease transmission.

the 2009 novel influenza A(HIN1) pandemic>* have significant societal impacts not only through disease-

induced morbidity and mortality, but also through their interference with socio-economic activities and
population movement. Global public health systems of surveillance and response have been substantially
improved in order to curb an emerging disease by containing it at source®” or by slowing down its spread from
the source®’. Effective public health information processing is at the core of any global surveillance and response
system. This is because at the start of an emerging epidemic, massive news coverage and fast information flow can
generate profound psychological impacts on the public, and hence greatly alter individuals’ behaviour and
influence the implementation of public intervention and control policies'®. How long and how effective media
impact remains is therefore an issue of great importance for future epidemics control, and quantifying this impact
through a mathematical modeling framework falls within the scope of this study.

Recently, several mathematical models have been proposed to investigate media impacts. Existing approaches
to modeling the impact of media coverage have focused on how this coverage depends on the number of infected
individuals''"%, where prototype decreasing functions such as e, e~ #£ =%/ =%H (yith H denoting hospitalized
individuals, I infectives, E exposed individuals and nonnegative constants m, a;, i = 1, 2, 3) and ¢; — ¢;f(I) (with
constants ¢j, ¢;) have been embedded into the incidence rate. However, individuals may also change their
behaviour due to their awareness and interpretation of the rate of change of the case numbers. Here we propose
a novel mathematical model to represent the behavioral changes or implementation of interventions which are
dependent on both the case number and its rate of change. We hope to examine how long media impacts last and
how effective they are for different types of behavioral changes. In practice, media impact affects disease control
(or spread) in conjunction with other visible measures, including non-pharmaceutical interventions (NPIs) (e.g.,
quarantine and isolation following contact tracing) and pharmaceutical interventions (PIs) (e.g., vaccines, treat-
ment). We also incorporate these interventions into our model in order to identify the most effective strategy (or
combination of strategies) including media impacted-behavioral changes to mitigate the epidemic during the
entire outbreak.

E merging infectious diseases such as the 2003 outbreak of Severe Acute Respiratory Syndrome (SARS)"* and

Results
The model with media impact. We investigate a general SIR(susceptible-infective-recovery)-type epidemiological
model, which incorporates media impacts and other interventions such as quarantine, isolation, vaccination and
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treatment. We stratify the usual susceptible (S), infected (I), and
recovered (R) compartments in the classical SIR model, to include
the quarantined susceptible (S;) and isolated infected (I,)
compartments. With contact tracing, a proportion, g, of individuals
exposed to the virus is quarantined. The quarantined individuals can
either move to compartment I,, or S, depending on whether they are
infected or not'®”, while the remaining proportion, 1 — ¢, of
individuals exposed to the virus, but missed from the contact
tracing, move to the infectious compartment I (once infected) or
stay in compartment S (if uninfected). Let the media-influenced
transmission probability be § and the contact rate be a constant c.
Then the quarantined individuals, if infected (or uninfected), move to
the compartment I, (or S,) at a rate of cq (or (1 — f)cq). Those who
are not quarantined, if infected, will move to the compartment I at a
rate of fic(1 — q). The infected individuals can be detected and then
isolated at a rate of d;, and can also move to the compartment R due
to recovery. The transmission dynamics is illustrated in Fig. 1.

We assume that media has impacts on individual behavioural
changes via responses to the case number or to the rate of change
of the case numbers, or to both'®?°. We then model such media
impacts with a decreasing function. Here we will use as a prototype
the media-impact function fpe ™, where

di(t) 0 qu(t)} )

dt dt

M(¢) =max{0,p11(t) +q11;(1))+p2

and py, pa, q1> 42 are non-negative parameters. The standard SIR
model can then be modified as

§'=A—puS—PsSI —vsS+1S,,
I'=PiSI— (0 +a+p+d)l,

Sq=QsSI— (Z+vs, + 1) Sy, (2)
Iy=QSI+diI— (61, +o+p) L,

R'=vs8+vs,8, +5,I+5Iqlq — UR,

where ’ is the derivative with respect to time, and 8 = exp~™® f3;, P
= fc+ cq(1 — B), Pr= Pc(1 — q), Qs = (1 — p)cg, Qr = Pecq with
baseline transmission probability ;. We also assume that susceptible
and quarantined susceptible individuals are also vaccinated at the per
capita rates v and vs,, respectively. We denote J; and Jy, as the
recovery rates of infected patients and isolated infected individuals,
respectively, and A and pu the recruitment rate to the susceptible
population and the natural death rate, respectively. The other para-
meters are defined in Table 1. The model we propose here differs
from previous studies of the effect of media coverage''~* in that our

formulated media-impact function depends on both the case number
and its rate of change. As the rates of change can be negative, our
model has to involve a piecewise smooth function.

Media-impact switching surface. When the media impact involves
the rate of change of the case numbers (I' () or Iy (t)), the model (2) is
an implicit system of differential equations. Interestingly, we show
that such a system can be converted into a switching system
based on an analytically computable functional relationship S, =
Sc(I, I,) between the susceptible and infected/infected quarantined
populations. This conversion is possible thanks to some important
properties of the Lambert W function®'.

To be more specific, welet Gy (t) = poI'(t) + q215 (), Go(t) = p1I(1)
+ q11,(t). We can show that whenever M (t) := Gy(t) + G(t) > 0, we
have

M()=Mi(5)=W e~ O OUGy(1)| —Gs(1) + Golt),  (3)

with
Go(t) =[p2Boc(1—q) + g2 Bocq|S(t)I(t) = mS(t)I(t),

(4)
Gs(t) = pamyI(t)+ qa (my I,(t) — diI(t))

and m; = 6+ o + i + dp, my, = 0p, + o+ . Animportant finding we
made is that the linear term involving rates of change G;(t) can be
written as

Gi(t)= w[e*GzWGs(f)GO(t)] —Gs(1),

using some important properties of the Lambert W function (see
electronic supplementary information (SI) and reference 21 for
details). Also, as shown in SI, M;(t) > 0 is equivalent to S(t) > S,
with S, = S(I, I,) given by

S — pomil+q, (mlqlq 7(1[[) *pllfqllq .

c

5
o ()
Therefore, we can characterize the transmission probability as fol-
lows:

0, $—-S.<0,

— — M, (t) — 6
A ©

The dynamic transmission model (2) subject to media impact (1) is
now converted to system (2) subject to the switching condition deter-
mined by the switching surface S = S.(I, I). In the literature on
control, model (2) with (6) is regarded as a qualitative description
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Figure 1 | Flow diagram to illustrate the infection dynamics during an outbreak. Integrated control measures include contact tracing, quarantine,
isolation and vaccination. Media impact is modeled as a factor potentially reducing the transmission rate.
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Table 1 | Parameter estimates for the 2009 HIN1 influenza in Shaanxi province, China

Parameter Definition Estimated mean value Std Reference
A Birth rate of the susceptible population

u Natural death rate - - -

Bo Probability of transmission per contact 0.5655 0.1071 MCMC
c Contact rate for the whole population 13.854 6.7557 MCMC
d Isolation rate for infected individuals 7.151 x10°° 7.091 x 107> MCMC
q Quarantine rate for the susceptibles 0.0089 0.0034 MCMC
A Rate at which the quarantined uninfected contacts were 1/7 0.02 17,26

released into the wider community

)] Recovery rate of infected individuals 1/6.56 0.02 26

a, Recovery rate of quarantined infected individuals 1/7.48 0.02 26

o Disease-induced death rate 0 0 -

q Weight of media effect sensitive to number of isolated infected population 0.0008 0.0007 MCMC
Q2 Weight of media effect sensitive to changes in numbers 0.5479 0.0463 MCMC

of isolated infected population
So Number of initial susceptible individuals 1.076 x 10° 28791 MCMC
lo Number of initial infected individuals 250 144 MCMC
chosen for sensitivity analysis

p1 Weight of media effect sensitive to number of infected population 0.0001 0.0007

P2 Weight of media effect sensitive to changes in number of infected population 0.15 0.04

Vs Vaccination rate for susceptibles 0.1 0.02

Vs, Vaccination rate for quarantined susceptibles 0.2 0.02
of a threshold policy (TP), referred to as an on-off control (or a AP ABye(1—q)
special and simple case of variable structure control)*>**. Note that Ry= ! 9 1 (7)

the critical level S, determines whether the media impact is effective
in lowering the incidence rate, and is called the switching surface.
Generally speaking, the critical level is used as a guide for starting/
suspending strategies, and hence this level determines when the
intervention strategies are implemented®*.

The formula S, reveals dependence of the switching surface on the
parameters and the numbers of infected and isolated individuals.
During the disease outbreak, the switching surface S, and the number
of susceptible individuals change. Depending on the relative sizes of
these populations, the media impact switches on and off dynam-
ically. To examine how long and/or how often the media impact
remains effective, we simulate the switching system using the para-
meters listed in Table 1. It is interesting to note that media impact
remains effective almost until the peak of the epidemic, and then
switches off, as shown in Fig. 2(B-C). This figure also shows that
media impact may switch on again during the subsequent waves. In
particular, increasing the susceptible size S(0) at day 50 induces the
second wave. During this second wave media impact switches on, as
shown in Fig. 2(B-C).

To identify which parameter or variable the switching surface (S,)
is sensitive to, we conducted a sensitive analysis by evaluating the
partial rank correlation coefficients (PRCCs) for all input parameters
against the output variable S.. Although the variables I and I, are
dependent on the equation (2) with (6), our sensitivity analysis is
performed with I and I, directly varying in relatively large intervals.
We chose a normal distribution for all parameters with mean values
and half standard deviations given in Table 1. Fig. 2(D) shows the
PRCCs which illustrate the dependence of S, on each parameter and
variables I and I,. This sensitivity analysis shows that the first five
parameters with most impact on S, are the recovery rate of the
infected individuals (6;), the transmission probability (), the con-
tact rate (c), isolation rate (d;) and quarantine rate (q). Fig. 2(D) also
shows that S, is more sensitive to the weight parameter p, (or g,) than
to the parameter p; (or g;). Therefore, we conclude that it is the
response to the rate of change of the case numbers, rather than the
case numbers, that has significant impact on the switching surface.

The switching system has the disease-free equilibrium Ey = (A/
ms, 0, 0, 0), which is locally asymptotically stable provided that the
basic reproduction number Ry < 1, where

- mgmyp - (H+Vs)(51+06+,u+d1) )

Note that this threshold Ry is the same as that for the model in the
absence of media impact. In other words, the media impact does not
affect the epidemic threshold. This is in agreement with findings of
refs. 11-13. When R, > 1, two subsystems (the subsystems for S < S,
and for § > S,) have their own respective endemic states. See SI for
details, see also ref. 25 and references therein for discussion about
‘virtual’ and ‘regular’ endemic equilibria and their relevance to dis-
ease infection dynamics. Here we focus on how long and how effec-
tive the media impact remains, based on the 2009 A/HIN1 influenza
pandemic in the Shaanxi province of China.

The estimated media-impact switching time. We obtained data on
laboratory-confirmed cases of the A/HIN1 influenza pandemic in
the Shaanxi province of China (shown in Fig. 3(A) and (B)) from the
Province’s Public Health Information System'. Note that the
number of hospital notifications and the growth rate of these
notifications were regularly available to the public during the 2009
A/HINI influenza pandemic. It is these notifications and their rate of
change with time that contributed to the public awareness of the
pandemic, and hence contributed to individuals’ behaviour. So, we
initially set p; and p, to zero and conducted sensitivity analysis to
examine the effect of varying p;, p, on disease outcomes (total
number of infected individuals and hospital notifications). The
demographic effects are not considered in the following discussion
because of the short epidemic time scale in comparison to the
demographic time scale, that is, A = pu = 0. Furthermore, no
disease-related death was reported in mainland China before mid
October 2009'7% and no vaccine against A/HIN1 was available until
the end of November 2009. Therefore, we set« = 0 and vs=vs, =0in
our parameter estimation.

By fitting the model (2) with (6) to hospital notifications (from 3
September to 12 October) we estimated all unknown parameters
(listed in Table 1) and derived the goodness of fit (shown in
Fig. 3(C)). The estimates on media impact (q; = 0.00074, g, =
0.5793) suggest that individuals are more significantly influenced
by the rate of change of the number of hospital notifications than
the number of hospital notifications. Moreover, our model is also
able to exhibit the second wave, shown in Fig. 3(D), and the estimated
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Figure 2 | Ilustrations of the switching surface of Sc (A) and its solutions (B-C) with parameters as listed in Table 1. S} (Sf) represents the switching
surfaces for the first (second) outbreak. The thick and thin curves denote the trajectories of the system (2) with (6) with media impact switched

on and off, respectively. (D) Partial rank correlation coefficients illustrating the dependence of S, on each parameter. Note that variable I varies in (1, 500)
with mean value of 250, and I, varies in (1, 50) with mean value of 4. Parameter o varies in (0, 0.02%) with mean value of 0.003%, y varies in (1/60, 1/80)

with mean value of 1/74%.

parameter values are listed in Table S2 in SI. We note that the initial
data for the second wave and some parameters associated with inter-
ventions during the second wave are different from those for the first
wave, while other parameters are kept unchanged. This is because the
first wave was mostly confined to university/college students, while
the second wave took off following the October National Day holiday
during which population mobility increased and strict campus-rel-
evant intervention measures (such as Fengxiao) were suspended,
leading to general population susceptible to the HIN1 infection'”?.
As the disease spreads to general population, interventions applied to
the general population such as quarantine or isolation could not be as
strict as those for the university/college students during the first wave
due to limited medical and public health resources. This explains
why a greater initial value for the susceptible population and a greater
contact rate, but lower isolation or quarantine rates, were estimated
for the second wave, compared with those for the first wave.

Based on the estimated parameter values listed in Table 1 and the
formula S, defined by (5), we calculate that the mean of the first
switching time is Ts = 25.47 days. The distributions of the first
switching time Tg associated with 100000 samples of a Markov
Chain (obtained from parameter estimation) is given in Fig. 4(A).
Similarly, we obtained the distribution of the first peak time for the
number of infected individuals and for the hospital notifications,
shown in Fig. 4 (B) and (C), respectively. It is interesting to note that
the mean of the first peak time for the hospital notifications is esti-
mated to be 25.52, which coincides very well with the first switching
time. Note that the first case in Xi’an City was reported on September
3rd 2009, which was assumed to be the initial date. It follows from

our estimated first switching time, based on our proposed model with
media-impact switching surface, that media impact remains effective
until around September 29th, a day before the National Day holiday
(from October 1st to the 7th) started. Hence the model predicts that
the media impact switched to the “off” mode on September 29. This
is in excellent alignment with the real situation during the national
holiday season: no HIN1 infection data available, little media cov-
erage, no travel warning issued, and consequently individuals
behaved as they would normally do during the holiday (travelling
and attending social gatherings)"”. In other words, media impact
actually became ineffective (i.e. the “off” mode) as the holiday
started. Hence, the predicted timing of switch off of the media impact
almost coincides with the real timing of switch off of the media. This
adds further validation of our proposed model.

Comparison with results ignoring media impact. To illustrate how
the transmission probability with media impact § = ffyexp(—eM; (1))
varies with disease spread (again we consider the case where p; = p, =
0), we plotted f3 as a function of time in Fig. 5(A). Fig. 5(B) shows the
fitted epidemic curve on hospital notifications. Note that the
transmission probability with media impact f might either be an
increasing concave function or an increasing function based on the
epidemic as shown in Fig. 5(B), depending on the values of g; and ¢,.
Since the estimated value of g, is much greater than the estimated
value of g;, f§ increases initially and then levels off due to the media
impact switching off. This indicates that the media impact, acting as a
factor in reducing transmission, continuously weakened and finally
switched off almost immediately after the epidemic peak. Repeating
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the above process without considering media impact (i.e., p; = ¢; = 0,
i = 1, 2) and plotting the transmission probability and the
corresponding epidemic curve gives the constant transmission
probability (shown in Fig. 5(E)) and the simulated epidemic curve
(Fig. 5(F)). It follows from Fig. 5(F) that the disease instantaneously
takes off and then quickly drops due to the rapid depletion of
susceptible populations. Comparing Fig. 5(B) with (F) further shows
that media impact significantly delayed the epidemic peak and
decreased the severity of the outbreak.

When p, = ¢, = 0 in the function M(t) in (1), model (2) reduces to
the usual explicit system with media impact, that was investigated in
several recent studies'"'*. Plotting the corresponding transmission
probability (B,e~"%) shows that media impact is effective in low-
ering transmission probability during the entire outbreak (shown in
Fig. 5(C)). In such a scenario, media impact remains effective as long
as there are infected individuals in the population and the impact is
the greatest when the epidemic peaks. It also indicates that media
impact increases as the number of infected individuals rises, and then
weakens with epidemic waning. In contrast, incorporating the
dependence on the rate of change of the case numbers in the media
impact transmission probability makes the model a switching sys-
tem. Consequently, media impact alternately switches on or off. On
the other hand, this incorporation of the dependence on the rate of
change of the case numbers makes the transmission probability the

lowest at t = 0, reflecting the greatest effect of the media impact
observed at the beginning of the epidemic.

The key processes or parameters for integrated mitigation. To
identify key parameters and/or intervention measures that influenced
the disease infection dynamics, we used Latin Hypercube Sampling
(LHS) and partial rank correlation coefficients (PRCCs) to examine
the dependence of the total number of infected individuals on
corresponding parameters”’ . Again, we chose a normal distribution
for all input parameters with the mean values and half standard
deviations given in Table 1. We calculated PRCCs between
parameters related to integrated disease control measures (IDCMs)(all
possible interventions including media impact) and the output variable
(here, the total number of infected individuals I + I,) over time, as
shown in Fig. 6(A). It follows that the significance of the effect of
parameters on the output variable changes over time. In particular,
we note that 1) some parameters become more and more correlated
to the output (e.g. oy, v sq); 2) some become less and less correlated to the
output (e.g. fo, ¢, dp); and 3) some are consistently insignificantly
correlated to the output (e.g. vs, 0 L,)~

We then generated Fig. 6(B) according to high (|[PRCCs| = 0.4),
moderate (0.2 =< |PRCCs| < 0.4) and low (0 =< |PRCCs| < 0.2)
correlations between IDCM parameters and the output variable.
Fig. 6(B) shows that variations in transmission probability f, isola-
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tion rate d; and quarantine rate ¢ dominate the PRCCs during the
early stages of the disease outbreak (especially before the epidemic
peak). In contrast, great coverage of vaccination (increasing vsq) is
the most effective control measure during the late stage of the disease
outbreak (after the epidemic’s peak). Moreover, parameter J; is
strongly correlated with the output almost throughout the entire
outbreak, confirming that strengthening treatment (especially for
non-isolated infected individuals) is effective throughout the entire
outbreak. In the early stages of the disease outbreak, enhancing quar-
antine and isolation after contact tracing (increasing parameter g and
dy) followed by implementation of such measures as frequent hand-
washing and wearing of masks (decreasing f3), are the most effective
integrated mitigation measures. This is consistent with the findings
of Fraser (2004)*°, who argued that isolating symptomatic indivi-
duals and quarantining their contacts are two effective public health
measures in controlling outbreaks.

It is worth noting that parameters p; and p,, associated with
awareness of the number of infected individuals and the rate of
change of the numbers of infected individuals, change from more
(negatively) correlated to less (negatively) correlated to the output as
the infection progresses, whereas parameters g, and ¢,, associated
with awareness to the number of isolated infectives and the rate of
change of the numbers of isolated infectives, are consistently less
correlated to the output. Moreover, the switching surface is more
sensitive to parameters p; and p, than to parameters g; and g,. This
indicates that increasing the awareness to the number of infected
individuals and the rate of change of the numbers of infected indi-
viduals, if practical, greatly affects the switching surface, and the total
number of infected individuals during the early stage of an outbreak.
In practice, however, we have very limited information on the num-
ber of non-isolated infected individuals, and hence it will be difficult
to increase individuals’ awareness using this information.

Discussion and conclusions

It has been observed that media impacts play an important role in
generating public awareness and promoting disease mitigation mea-
sures®. Our study examined media impact using a piecewise smooth
function to reflect that individuals’ awareness depends on both the
number of cases and its rate of change. As such, we obtained an
implicitly defined system®. This modeling approach adds to a few
recent studies on media impact''~" by including the dependence of
media impact and behavioral change on the rate of change of disease
cases. Interestingly, this piecewise smooth and implicitly defined
model can be successfully converted, using the Lambert function,
into a switching system®>***"*?, which has been widely used in mod-
ern theory and applications of control. This permitted us to describe
the critical level for the number of susceptibles (e.g. S,) above (below)
which media impact remains effective (ineffective) and consequently
the disease transmission rate is reduced (unchanged).

We observed that the switching surface S,, dependent on numbers
of different subgroups of infected individuals, is not a constant
(hyperplane). This switching surface S, given in (5) becomes a con-
stant only if we ignore the population that is isolated (or treated/
hospitalized). In practice, it is this number that is known with some
certainty, and it is this number that may be released to the publicin a
timely fashion. Our results indicate that this number also makes the
switching on/off of media impact dynamic (temporally varying) and
potentially adaptive.

It worth noting that the media impact does not always remain
effective for reducing transmission during the entire outbreak but
it does switch on or off during the outbreak. This switch is most
effective if it is guided by the rate of change of the disease cases, as
we have shown in this study. We also demonstrated in Fig. 2 that
media impact switches on and off multiple times depending on the
duration of the outbreak, and this becomes a possible source for the
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observed multiple waves. Our study suggests that the occurrence of  that, first of all, the media impact on the disease outbreak is a
multiple waves may be relevant to the fact that the number of sus-  dynamic process; and secondly, that the media impact has its greatest
ceptible individuals oscillates around the threshold S, (correspond-  effect in reducing disease transmission at the initial stage of an out-
ingly, the number of infected individuals also oscillates). This means  break. This is in contrast to previous studies'’~'>**, in which the
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Figure 6 | Temporal variation of the sensitivity of the total number of cases (I + I,) to key parameters in the model (2) with (6) as indicated by (A) Plots
of the PRCCs and (B) significance over the time interval [0,40] with sample size of 1500. The parameters related to IDCMs in model (2) are
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reduction effect of the media reaches its maximum near the outbreak
peak (shown in Fig. 5(C-D)).

A comprehensive understanding of media impacts during an epi-
demic threat can aid in the development of an implementable public
health policy. Of particular interest to designers of such policies are
the effects of the media on some important epidemic characteristics
such as the magnitude of the peak, its timing and the total number of
infections. Our model and analysis, like those in previous stud-
ies'""""**, confirm that quantifying these effects provides further
insights. In particular, the switching on and off of media impacts,
as a result of individual behavioural responses to the rate of change of
case numbers, leads to the greatest effect on the disease transmission
during the early stage of the outbreak. This finding draws attention to
the important role of informing the public about “the rate of change
of case numbers” rather than “the absolute number of cases” in order
to influence behavioral changes, through a self-adaptive media
impact on-off switching, for a better control of the disease
transmission.

By fitting data on laboratory-confirmed cases during the 2009
pandemic of A/HIN1 influenza in the province of Shaanxi to our
proposed model, we were able to obtain estimates of the unknown
parameter values and the mean time of media-impact switching on
and off. In particular, the estimated mean time when media impact
switched off was about 25.47 days after the initiation of the outbreak.
This result, together with the initial date of September 3rd 2009, leads
to the conclusion that media impacts switched off on September 29th
2009. This is almost consistent with the realistic timing when the
media impact became ineffective, represented by the fact that indi-
vidual behaviours switched to regular holiday mode since a travel
warning was not issued during China’s National Day holiday (from
1st October to 7th October).

It follows from Fig. 4(A) and (C) that the media impact switched
off just after the epidemic peaked. This was further demonstrated in
Fig. 2(C) This observation on the consistency of media-impact
switching and epidemic peaking supports the conclusion that the
weakest effect of media impacts always occurs near the epidemic
peak. Our sensitivity analysis indicated that the effect of media
impact is much more sensitive to the parameter g, (the weight repre-
senting individuals’ response to the rate of change of case numbers)
than the parameter g, (the weight representing individuals’ res-
ponses to the case numbers). This finding also explains why the
switching time is always consistent with the peak time of the curve
for the isolated infected individuals, since near the peak time, the rate
of change of the case numbers is close to zero.

By fitting the proposed model to the aforementioned real data, we
obtained reasonable estimations for the parameter ranges and the
curve fitting Fig. 3(D). We have also tried to fit the model using the
probability transmission function that depends only on the case
numbers''™*?, or simply a classical epidemic model without consider-
ing media impact. Within reasonable parameter values, the simula-
tions using the model without considering media-impact, or using
the model with media impact depending only on the case numbers,
gave very poor fits to the A/HIN1 data, as shown in SI Fig. S1 (A-B).

The analysis based on the PRCCs, identifying the key (mitigation)
input variables that contributed to the infection outcome, strongly
supported the implementation of an integrated strategy of different
mitigation measures, including media impact, to curb the outbreak
during different phases of the epidemic. The PRCCs show that the
most important parameters that contributed to the total case num-
bers were parameters associated with quarantine (q), isolation rate
(d;) and transmission rate (including transmission probability f,
and the weight measuring the media impact py, p,) during the early
stage of the disease outbreak. In other words, we confirmed that
enhancing quarantine and isolation (increasing parameters g and
dp), improving disease awareness (increasing p;, p,) and personal
hygiene (decreasing f3,) are the most effective measures to be adopted

in an integrated strategy for mitigation during the early stage of the
outbreak.

The total number of cases is barely sensitive to variation in para-
meter vs. This observation, perhaps surprising at first glance, seems
to be highly relevant to the unique characteristic of the first wave in
China. The majority of susceptible individuals, during the early stage
of the 2009 A/HIN1 infection in Shaanxi, China, were university
students and most universities implemented relatively stringent
non-pharmaceutical interventions (NPIs) like Fengxiao at the begin-
ning of the first wave'”*. Hence, the number of susceptible indivi-
duals significantly declined.

In conclusion, this study presents a novel methodology to convert
an implicitly defined compartmental model into a switching system
with explicitly defined switching surface. Using this methodology,
this study demonstrated that media impact exhibits dynamic on-off
switching, depending on the relationship between the number of
susceptible individuals and different subgroups of infectives at any
time during the outbreak. The modeling analysis emphasizes the
important role of behavioral changes in response to the rate of
change of the case numbers, and concludes that media impact effects
switched off when the epidemic peaked.

Methods

Data. We used data on laboratory-confirmed cases of 2009 A/HIN1 influenza
pandemic in the Shaanxi province of China acquired from the Province’s Public
Health Information System'’”. The data included information on the cumulative
number of reported cases, the cumulative number of cured cases and the number of
new cases. The Shaanxi Bureau of Health started to report cases daily on September
3rd 2009 (shown in Fig. 3) and then changed, on September 19th and November 17th
to report once every two days and once every week, respectively. No data were
available at weekends. The majority of cases in the province in early September were
associated with university/college campuses'”*. All confirmed cases in mainland
China were isolated in health care facilities, were treated, and were assumed to be
unable to spread the disease once isolated.

Parameter estimation. Due to irregular reporting of data in the province of Shaanxi
(e.g. reporting delays at weekends) and changes to reporting policy, we had to
generate daily hospital cases using the cubic spline interpolation method,
implemented as a Matlab program. We used an adaptive Metropolis-Hastings (M-H)
algorithm to carry out the Markov Chain Monte Carlo (MCMC) procedure to
estimate the parameters and their standard deviations based on data from hospital
notifications between September 3rd and October 12th for the Shaanxi province and
using model (2) with the media impact function specified in (6). The algorithm runs
for 500000 iterations with a burn-in of 300000 iterations, with the Geweke
convergence diagnostic method employed to assess the convergence.
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