
Supplementary Methods 
Introduction 

PubCrawler is a high-resolution spatial dataset representing estimated “reporting effort” that 
serves as a background weight for our model. 

“Reporting bias” refers to bias in a model that is due to the unequal distribution of reporting 
effort, leading to uneven detection probability for the outcome of interest (in our case EID 
events ). We followed previous authors and reasoned that variation in detection probability of 
disease events would be primarily determined by “search effort”; namely, the extent to which 
disease events have been looked for.1,2 Since search effort is difficult to estimate directly for 
infectious diseases at a global scale, we further reasoned that search effort would be a 
function of “reporting effort”, which is the extent to which disease events are “reported” to 
become part of the scientific literature. This is appropriate here since our observations of 
disease events are similarly drawn from the scientific literature.  

Previous studies have similarly recognized this issue when modeling infectious disease 
occurrence, and various methods have been used to estimate the distribution of reporting 
effort. In certain cases, presence-only data may be supplemented with data on known 
sampling bias, or data from other planned sampling efforts.3 A previous study using an earlier 
version of the dataset used in the present study used locations drawn from the Journal of 
Infectious Disease as a measure of reporting effort.4 An index was created using the country of 
residence of every author from all JID articles since 1973. This country-level measure of 
reporting effort was then downscaled to match the spatial grid used in the analyses (~100 x 
100km) and included as a covariate in a logistic regression model. Similarly, in their study of 
water-associated infectious disease events, Yang et al., (2012) searched PubMed for 
“infectious disease” and “[country name]” and recorded the yearly counts at the country level 
for 1991 through 2008 5. In their spatial Poisson model, these country level publication count 
estimates were again downscaled to match the spatial grid used in their analyses and included 
as an offset.5 

In our analyses, we sought to improve on these methods by creating a better-than country 
level reporting effort dataset. Country-level measures of reporting effort may be limited as a 
correction for more fine-grain bias in the detection of disease events in people. Furthermore, in 
the case of Jones et al., (2008), the country of residence of authors may not be a good proxy 
for the locations in which studies have actually occurred. To solve these issues, we adapted 
methods from ecology that are now routinely used when modeling species distributions from 
“presence-only” data.  

In “presence-absence” models, where both positive (i.e., presence/occurrence records) and 
negative (i.e., absence) outcome samples are gathered from the same dataset (e.g. 
systematized surveys for species), both presence and absence records are drawn from the 
same covariate space and can be compared directly. However, the same is not true for 
datasets involving only observations of an event (i.e., presence-only). In such circumstances, 
presence records are typically contrasted with randomly generated records, often termed 
“background data” or (somewhat misleadingly) “pseudo-absence” records. However, while it is 



reasonable to compare a distribution of observations against a random distribution, the set of 
“background data” provided to the model may innately differ from the covariate space of 
search effort, and this can cause poor model performance and/or spurious associations.1-3 
Weighting or stratifying background points by a proxy or estimate of detection probability can 
ameliorate this problem. By balancing the distribution of covariates in the background sample 
and a hypothetical null outcome sample, the divergence between those measured by the 
model should be due to the effect of interest.1-31 

Materials and Methods 

All code used to generate the dataset is available on GitHub 6. 

To estimate reporting effort and integrate it with our models, we wrote a series of scripts in 
Python and R to identify place names in the PubMed Central Open Access Subset (PMCOAS), 
and aggregate them to the spatial grid used in our analyses. This section describes the current 
capabilities of the PubCrawler Python package, and then details the workflow used in the 
creation of the reporting effort layer for this study. 

We developed three components for our workflow: 

• PubCrawler, a Python package, which provides functionality for extracting information 
from PMCOAS. 

• Annie, a generalized text annotation Python package, first developed for the GRITS 
(Global Rapid Identification of Threats) natural language processing tool.7 PubCrawler 
uses Annie’s GeonameAnnotator() class, and a modified method from that class, to 
identify toponyms in article text. 

• pubcrawler2hotspots, a set of R scripts bundled as a package, which aggregates 
extracted toponyms to the spatial grid used in our main model, and fits a boosted 
regression tree model to the output. 

Managing Articles 

PubCrawler, written in Python 3.4, consists of a number of classes and scripts that facilitate 
the extraction of data from PMCOAS. PubCrawler stores data, including the PMCOAS and 
GeoNames toponyms (described below) in Mongo databases. Scripts are included to initialize 
these databases in the required format and ingest the raw data. 

Articles in the PMCOAS are available in NXML (National Libraries of Medicine XML) format, a 
schema that defines a number of entities, including article identifiers, publication type, 
indicators for keywords, and publication dates. These are stored in the database with the 
contents of the file as a property named "nxml" and the name of the file as Mongo’s "_id" 
property. 

PubCrawler defines the class Article(), which takes an article from the Mongo database. This 
class has methods defined for accessing the article’s publication IDs, publication dates, article 
type (e.g. "research-article"), title, and keywords (if any), as well as the text from any named 
tags in the XML document. 



A separate module defines three “extractor” functions, described below, along with a number 
of auxiliary functions, to manage writing the extracted information to the documents in the 
database. Some of the extractor functions use Annie internally.7 

The script “crawler.py” provides the core functionality of the PubCrawler package, iterating 
across batches of articles in parallel, extracting and saving metadata using specified extractor 
functions (described below). 

After toponyms and other information are extracted, the script “export.py” iterates through 
articles (optionally specifying a subset via a Mongo query), writing a CSV file per article in a 
directory (in subdirectories of 10,000) with all extracted locations, plus pertinent metadata. 

Extracting Metadata 

The PMCOAS contains everything published in participating journals, including research 
articles, reviews, errata, figures, and commentary.8 For our analyses, we only exported data for 
research articles. The extract_meta() function records this information from NXML tags and 
stores it in the database. The script “create_index.py” tailors this information to facilitate 
processing the large volumes of data. 

Extracting Infectious Disease Terms 

The PMCOAS includes articles on “biomedical and life sciences”, broadly defined.8 We 
restricted our search to articles related to infectious diseases. To do this, we first tried using 
keywords as they are represented in NXML documents; however, the <kwd> element is not 
consistently applied throughout the OAS. In a random sample of 10,000 articles, 50.3% (95% 
CI [49.4%, 51.3%]) contained the <kwd> element, and these keywords may come from various 
ontologies (such as MeSH) or be author-created.9 For each article, We searched the full body 
text for diseases caused by infectious agents in the Human Disease Ontology (1392 
keywords).10 Accordingly, the function extract_disease_ontology_keywords() uses the Human 
Disease Ontology (in OWL format) to return a list of keywords found in an article, which are 
recorded in the database. The infectious disease terminology extractor uses Annie’s 
KeywordAnnotator() class. 

Extracting Toponyms 

PubCrawler’s toponym resolution uses Annie’s GeonameAnnotator() class in conjunction with 
some amended methods from that class. The algorithm uses the GeoNames database as its 
gazetteer, which consists of over 10,000,000 named locations, including 2,800,000 populated 
places.11 GeoNames metadata includes location, alternate names in multiple languages, 
geographic “feature class”. Toponyms are resolved in a multi-stage process: 

• Candidate locations are extracted by searching 1- through 7-word n-grams (contiguous 
sequences of words constructed with a “moving window” through the text, internally 
termed “spans”) for text matches in the GeoNames database, using both the “name” 
and “alternatenames” fields (GeoNames’s “alternatenames” generally includes the 
toponym in a variety of languages, and with different permutations accent markings and 
other textual features). Where a span matches multiple GeoName entities, the list of 
“alternateLocations” is recorded. In addition, alternate locations that match different 



spans (e.g. “Harare Province” has “Harare” as an alternate name; these would be listed, 
as would the city “Harare”). 

• For each location, “features” are extracted. Each feature is a property of the location or 
of its place in the text, and is assigned a score between 1 and 100. Features, scores, 
and weights (below) were developed through expert evaluation and empirical 
observation of results from a small test article set. Features used in the current version 
are as follows (specific scoring criteria can be found in the code): 

o population_score – categories based on population size 
o synonymity – categories based on the number of alternate names for a feature 
o num_spans_score – categories based on the number of times the location 

occurs in the text 
o short_span_score – penalties applied for matches under 4 and 5 characters 
o NEs_contained – a score based on whether the spans matching the text are 

flagged as named entities by Annie’s named entity recognizer 
o distinctness – a score based on the number of alternate locations matched for a 

word 
o max_span_score – a score assigned based on the length of text matching the 

location, assuming that longer text allows for greater specificity 
o feature_code_score – a score given to features of certain classes, including 

continents 
o canonical_name_used – a score given if any of the text matches for a location 

use its primary specified name 
• Feature scores are weighted post-assignment and used in an algorithm to filter false 

positives and disambiguate ambiguous toponyms. First, toponyms with a score lower 
than 50 are removed. The remaining locations are passed to an algorithm that only 
returns the combination of toponyms for non-overlapping text spans which maximizes 
the summed feature weights for the document. 

• The complete and culled sets of toponyms for the article are stored, referencing the 
GeoNames database. 

Spatial Aggregation Workflow 

The R package pubcrawler2hotspots contains the code for the spatial aggregation and model 
fitting workflows described below, used to generate the reporting effort layer in this study. 

PubCrawler was run on the PMCOAS articles. Locations were exported to CSV for all research 
articles whose body text matching Human Disease Ontology keywords. Before aggregation, 
additional filtering was conducted on locations. 

• Continents were excluded. Continents are frequently matched, but because each 
GeoName is assigned a single set of coordinates in the centroid of the continent, their 
inclusion creates a few spurious high-value outliers. Countries are excluded for the 
same reason. Lower-level administrative divisions did not cause as severe a problem 
due to the coarse target resolution, and so were not excluded. 

• A short list was compiled of 20 frequently-matched, obviously-spurious terms which 
appeared despite the culling process, here listed in descending order of frequency: 
"American River", "Candida", "Research", "Centre", "Sigma", "Normal", "Middle", 
"Tukey", "The World", "Golgi", "Male", "Horizontal", "Teaching Hospital", "Cancer", 
"Altogether", "Delta", "Excel", "Chicken", "Basic", and "Scheme". 



• Locations in the GeoNames classes “spot, building, farm” and “undersea” were 
excluded, as were zero-population locations. 

Each article was assigned a weight of 1, which was distributed uniformly across the remaining 
locations. These weights were aggregated to the grid used for the study's main model. 

Model Fitting 

The raw layer of weighted counts was not appropriate for use directly in weighting a model. 
Our data source constitutes only a sample of the research literature, and errors of omission 
and commission in our toponym resolution add noise to that sample. Practically speaking, this 
led to a number of zero-count grid cells in low-publication areas and outlying high-count grid 
cells and resulting in overdispersion (the layer’s variance, 4919.2, is much higher than the 
mean of 7.5). Fitting a model allows us to fill in these gaps and smooth this distribution. We fit 
a Poisson boosted regression tree to the aggregated layer, and used the predicted values for 
grid cells as our reporting effort layer. 

Because the data exhibited overdispersion and excess zeros, we explored GLM frameworks 
for zero-inflated and overdispersed data during our fitting process: 

• Poisson GLM, which found all variables be significantly associated with the outcome, 
but was inappropriate for use because of overdispersion; 

• Quasipoisson GLMs, which had large dispersion parameters and non-significant p-
values; 

• glm.nb() function from the pscl package, for a negative binary GLM, which failed to fit; 
• Zero-inflated Poisson models using the zeroinfl() function from the boot package, which 

encountered problems fitting. 
• In case the large number of zeroes was caused by a lack of GeoNames entities in the 

zero grid cells, we created a variable by summing the number of eligible GeoNames 
entities in all grid cells (using the same categories as were used to match locations in 
PubMed Central text). Including this as a coefficient and as an offset in the models did 
not solve the problems the GLM modules encountered. 

 
We posited that the fit problems are due to the high number of zeroes (approximately 78% of 
grid cells were zero) and high-valued outliers among grid cells, which do not conform to the 
distributional requirements the GLMs and their fitting algorithms. Because of this, we discarded 
the GLMs. 
 
We selected BRTs largely because they are able to return fairly accurate predictions — as long 
as they are predicting values which occur within the covariate space in which they were trained 
— and are robust to data which would be problematic or assumption-violating for other 
modeling methods, including sparse data and non-normally distributed data. 
 
Although the predominant R packages for boosted regression trees do not include variants of 
zero-inflated Poisson or negative binomial regression, BRTs flexibility permits them to capture 
the higher variance that results from overdispersion/excess zeroes. Since BRTs aggregate 
smaller models, fit to subsections of covariate space, values for covariates (and thus λ) may 
vary between different subsections of covariate space. (The prediction layer from the Poisson 
BRT indeed exhibits similar overdispersion to the raw layer, with a mean of 7.9 and variance of 
3232.2.) 



Predictor Datasets 

We selected predictor datasets based on a priori hypotheses about mechanisms shaping 
research effort. 

The following predictors were read in at grid-cell resolution: 

• Human population size, using the GRUMP dataset also included in the main model. We 
seek to model research on human infectious disease, and such research is also 
conducted by humans. 

• Average travel time to cities with populations > 50,000. Research may be conducted 
more often in more accessible areas. 

• Percentage of grid cell of urbanized land, from the EarthEnv dataset included in the 
main model. Urbanization may serve as a broad proxy for factors increasing the 
likelihood of research being conducted, including the presence of funding and 
resources, above and beyond sheer population density. 

The following predictors were available at country level. We associated them with JSON 
shapefiles and projected them to the study grid, weighting per capita variables by population 
per grid cell. 

• Per capita DALY rates from all causes (WHO). More research may be conducted where 
there is thought to be a higher burden of disease. 

• Per capita health expenditure (WHO). Greater health care expenditure in an area may 
lead to more research being conducted in that area.  

• Per capita GDP (UN). Places with more economic activity may conduct more research. 
Lower-GDP countries generally have a higher burden of infectious disease, and so may 
see more research conducted in the aggregate, but DALY rates are included in the 
model. 

The Poisson BRT module used requires that the outcome vector to be an integer, but our 
counts were weighted, so we rounded the aggregated output values per grid cell to whole 
numbers. The counts were large enough that this made no meaningful difference to the 
distribution (R2 = 1). 

The boosted regression tree was fit using the “gbm.step()” function in the R package “dismo”. 
The tree complexity used in the final model was 3; the learning rate was 0.01; the bag fraction 
was 0.75; the number of trees added per iteration was 50. 

Results 

Of the 1,266,085 articles in the PMCOAS, 931,087 (73.5%) were research articles, and 204,097 
matched our infectious disease keyword search and (16.1%) matched our infectious disease 
search query. 157,779 articles matched both criteria, and contained matched locations. The 
mean total deviance for the publication model was 56.5, and the residual deviance was 15.2; 
the percentage explained was 73%. 



 
Supplementary Figure 1. Locations extracted from publications matching infectious disease keywords. Toponyms 
with non-zero populations were weighted uniformly, normalized by publication, and aggregated to a 0.25° grid. 
Before plotting, toponym count was truncated at the 90th percentile, to prevent outlier grid cells from skewing color 
palette scaling. 

 
Supplementary Figure 2. Partial dependence plot for the BRT model used to smooth the publication layer, plus 
relative influence of variables. 

Our reporting effort layer is statistically significantly associated with the layer used by Jones et 
al.4 when aggregated to country level (McFadden’s Pseudo R2 = 0.78 and p < 0.005 computed 
with a univariate Poisson glm). Since the new report effort layer represents a new process that 
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is theoretically aligned with our outcome of interest at a smaller-than-country resolution, and 
produces a similar distribution at country level as the previous method in 4, we think it is a 
meaningful advancement in disaggregating infectious disease reporting effort past country 
level. Future research should focus on improving the natural language processing algorithms 
used to create the measure, and create gold standard datasets to test the accuracy at 
publication level. 
  



Supplementary Note 1 

  

  
Supplementary Figure 3. Shapefiles for wildlife-origin zoonotic EID events, summed to the study grid. The top row 
shows pre-1970 events, excluded from analyses; the bottom row shows post-1970 events included in analyses, as 
used for the “unweighted” model’s presence samples. The left column scales colors linearly across values, whereas 
the right column scales the color palette across log-transformed values to better reveal large events. Each event is 
distributed across the grid cells its known occurrence area encompasses such that the value represents the 
probability that it occurred in that cell (here assumed to be across land area, as in the “unweighted” model). An event 
overlapping only one grid cell would contribute a value of 1 to that grid cell; an event covering the entirety of Russia 
would contribute a small fraction to each grid cell. The summed value is used to weight bootstrap presence samples. 
(See Methods for more details on sampling regime.)  

 
Supplementary Figure 4. EID events post-1970, summed to the study grid in the manner described above but 
weighted by reporting effort, instead of land area, as in the “weighted” model. The color palette is scaled 
logarithmically to better show differences on the low end of the distribution. These represent the presence sample 
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for the weighted model (compare to bottom-right quadrant of Supp. Figure 3.1 for unweighted model’s events with 
the same color palette scaling). 

 
Supplementary Figure 5. Scatterplot matrix and correlation coefficients for variables in the model which exhibit a 
correlation coefficient of ≥ 0.5 with any other variable, and additional variables of interest. 

  



Supplementary Note 2 
Additional Output from Weighted Model 
 

Variable 1 Variable 2 Interaction Strength Quantile 
0.25 0.5 0.75 

Pasture Change Cropland Change 0.15 0.31 0.81 
Global Envir. Strat. Pasture Change 0.12 0.28 0.6925 

Livestock Mammal Headcount Mixed/Other Trees 0.11 0.28 0.39 
Cropland Change Cropland 0.12 0.27 0.7 

Shrubs Mixed/Other Trees 0.1125 0.265 0.3275 
Pasture Change Cropland 0.12 0.26 0.585 

Mixed/Other Trees Cropland Change 0.11 0.25 0.57 
Mammal Biodiversity Pasture Change 0.1 0.25 0.67 

Urban/Built-up Pasture Change 0.1 0.245 0.555 
Mixed/Other Trees Pasture Change 0.1225 0.24 0.4975 

Supplementary Table 1. Quantiles for BRT interaction strength, as assessed by the gbm.interactions() function from 
the dismo package, across the 1000 runs of the weighted model. 

The following figures show the relative influence and partial dependence plots, and top ten 
interactions, from the unweighted model.  

 

  



Supplementary Note 3 
Output from Unweighted Model 

 
Supplementary Figure 6. Relative influence of predictors in unweighted model. 
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Supplementary Figure 7. Partial dependence plots for unweighted model. 
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Variable 1 Variable 2 Interaction Strength Quantiles 
0.25 0.5 0.75 

Regularly Flooded Veg. Herbaceous Veg. 0.41 0.44 0.51 
Urban/Built-up Pasture Change 0.2 0.42 1.01 

Cultivated/Managed Veg. Cropland Change 0.19 0.41 0.885 
Urban/Built-up Deciduous Broadleaf Trees 0.16 0.39 0.94 

Regularly Flooded Veg. Cropland 0.27 0.38 0.4 
Urban/Built-up Cultivated/Managed Veg. 0.17 0.37 0.84 

Pasture Change Cropland Change 0.18 0.36 0.6975 
Shrubs Pasture Change 0.1525 0.35 0.585 

Herbaceous Veg. Pasture Change 0.185 0.35 0.77 
Mammal Biodiversity Cultivated/Managed Veg. 0.15 0.35 0.7 

Supplementary Table 2. Quantiles for BRT interaction strength, as assessed by the gbm.interactions() function from 
the dismo package, across the 1000 runs of the weighted model. 
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