# THE LANCET

# Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Wood AM, Kaptoge S, Butterworth AS, et al. Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. *Lancet* 2018; **391:** 1513–23.

#### Annex 1: Harmonisation of drinking amount across the contributing studies

#### **Emerging Risk Factors Collaboration**

Data on alcohol were harmonised at the ERFC coordinating centre in consensus with the individual study collaborators. Studies used a variety of questionnaire-based approaches (eg, self-administered *vs* interview-led questionnaires; food frequency questionnaires *vs* dietary recall surveys) to provide information on alcohol consumption, which included semiquantitative information (eg, amount in a given period, frequency of drinks in a given period, categories for amount or frequency) of different types of alcoholic drinks (ie, beer, wine, cider, spirits/liquor, alcopops, long drink, fortified wine, liqueur, sake, shochu, tharra, aperitif/digestif) (eTable 1). The available information was harmonised into variables denoting (in order of precedence): amount, status, duration, stop age, start age, years stopped, usage frequency. When information was provided as semi-quantitative categories of intake, alcohol amount was assigned based on the mid-points of bounded categories or the lower bound of an open-ended highest category. Alcohol status was categorised as "never", "never/ex", "ex", "ex/current" and "current" drinkers. The alcohol status categories "never/ex" and "ex/current" included studies that did not definitively distinguish between never and ex drinkers, or between ex and current drinkers, respectively. Subsequently, drinking amount was set to missing for participants with "ex/current" drinking status as it was not possible to distinguish current drinking amount. Information on alcohol amount was converted to a UK standard scale of grams/week (1 unit=8 grams of ethanol). Alcohol status and amount were cross-referenced with each other to resolve ambiguous data and update missing information.

#### **EPIC-CVD**

Intake of alcoholic drinks at baseline was calculated from validated country-specific dietary questionnaires aimed to capture specificity of local dietary habits. The number of standard glasses of alcoholic drinks (beer, cider, wine, sweet liquor, distilled spirits or fortified wines) consumed per day/week during the 12 months prior to recruitment were reported by participants. In each country, intake was calculated based on the estimated ethanol content and usual glass volume for each type of alcoholic beverage<sup>1</sup>. To this purpose, information from highly standardized 24-hr dietary recalls from a subset of the cohort was used. Information on lifetime alcohol intake were collected with lifestyle questionnaires administered at baseline. Information on lifetime alcohol consumption was assessed as number of glasses of different drinks consumed at 20, 30, 40 and 50 years of age consumed per week, and then computed as a weighted usual and expressed as grams per week. Information on alcohol amount was then converted to a standard scale of grams/week (1 unit=8 grams of alcohol).

### **UK Biobank**

Intake of alcoholic drinks at baseline was obtained from a touchscreen questionnaire which was used to extract information on status, intake frequency (per month) and beverage type (ie, red wine, white wine/champagne, beer, spirits, fortified wine). See https://biobank.ctsu.ox.ac.uk/crystal/docs/TouchscreenQuestionsMainFinal.pdf. Information on total alcohol amount was then calculated and converted to a standard scale of grams/week (1 unit=8 grams of alcohol).

<sup>1</sup>Bergmann MM, Rehm J, Klipstein-Grobusch K, Boeing H, Schütze M, Drogan De, et al. The association of pattern of lifetime alcohol use and cause of death in the European prospective investigation into cancer and nutrition (EPIC) study. Int J Epidemiol. 2013;42(6): 1772–1790.

#### **Annex 2 ERFC Study Acronyms**

ARIC, Atherosclerosis Risk in Communities Study AFTCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study ATENA, cohort of Progetto CUORE ATTICA, ATTICA study AUSDIAB, Australian Diabetes, Obesity and Lifestyle Study BHS, Busselton Health Study **BRUN**, Bruneck Study **BWHHS**, British Women's Heart and Health Study CAPS, Caerphilly Prospective Study CASTEL, Cardiovascular Study in the Elderly CHARL. Charleston Heart Study CHS1, CHS2, Cardiovascular Health Study I and II **COPEN**, Copenhagen City Heart Study CONOR, COhorts of NORway (5 cohorts: FINNMARK, HUBRO, OPPHED, OSLO2, TROMS) CUORE, Progetto CUORE (4 cohorts: ATENA, MATISS83, MATISS87, MATISS93) DESIR, Data from an Epidemiological Study on the Insulin Resistance Syndrome DRECE, Diet and Risk of Cardiovascular Disease in Spain **DUBBO**, Dubbo Study of the Elderly EAS, Edinburgh Artery Study EPESEBOS, The Established Populations for the Epidemiologic Study of the Elderly Studies, Boston **EPESEIOW**, The Established Populations for the Epidemiologic Study of the Elderly Studies, Iowa EPESENCA, The Established Populations for the Epidemiologic Study of the Elderly Studies, North Carolina **EPESENHA**, The Established Populations for the Epidemiologic Study of the Elderly Studies, New Haven ESTHER, Epidemiologische Studie zu Chancen der Verhütung und optimierten Therapie chronischer Erkrankungen in der älteren Bevölkerung FINMARK, cohort of CONOR FINRISK92, Finrisk Cohort 1992 FINRISK97, Finrisk Cohort 1997 FLECTHER, Fletcher Challenge Blood Study FUNAGATA, Funagata Study **GOLSTRUP**, Golstrup Study GREPCO, cohort of Risk Factors and Life Expectancy Pooling Project HBS, Helsinki Businessmen Study HCS, Hertfordshire Cohort Study HIMS, Health in Men Study HISAYAMA, Hisayama Study HONOL, Honolulu Heart Program HUBRO, cohort of CONOR **IKNS**, Ikawa, Kyowa, and Noichi Study KARELIA, North Karelia Project KIHD, Kuopio Ischaemic Heart Disease Study LASA, Longitudinal Aging Study Amsterdam MATISS83/87/93, cohort of Progetto CUORE MESA, Multi-Ethnic Study of Atherosclerosis MCVDRFP, Monitoring of CVD Risk Factors Project MICOL, cohort of Risk Factors and Life Expectancy Pooling Project MONICA KORA1, MONICA/KORA Augsburg Surveys S1 MONICA\_KORA2, MONICA/KORA Augsburg Surveys S2 MONICA KORA3, MONICA/KORA Augsburg Surveys S3 MORGEN, Monitoring Project on Chronic Disease Risk Factors MRCOLD, MRC Study of Older People MRFIT. Multiple Risk Factor Intervention Trial 1 NFR, cohort of Risk Factors and Life Expectancy Pooling Project NHANES I, First National Health and Nutrition Examination Survey NHANES III, Third National Health and Nutrition Examination Survey NPHSII, Northwick Park Heart Study II NSHS, Nova Scotia Health Survey **OPPHED**, cohort of CONOR **OSAKA**, Osaka Study **OSLO2**, cohort of CONOR

PRHHP, Puerto Rico Heart Health Program PRIME, Prospective Epidemiological Study of Myocardial Infarction PROCAM, Prospective Cardiovascular Münster Study PROSPER, Prospective Study of Pravastatin in the Elderly at Risk QUEBEC, Quebec Cardiovascular Study RANCHO, Rancho Bernardo Study **RS\_I**, The Rotterdam Study I **RS II**, The Rotterdam Study II RS\_III, The Rotterdam Study III SHHEC, Scottish Heart Health Extended Cohort SHIP, Study of Health in Pomerania TOYAMA, Toyama Study TROMS, cohort of CONOR TROMSØ, Tromsø Study ULSAM, Uppsala Longitudinal Study of Adult Men WHITE I, Whitehall I Study WHITE II, Whitehall II Study WHIHABPS, Women's Health Initiative (Hormones and Biomarkers Predicting Stroke in Women) WCWC, Württemberg Construction Workers Cohort WOSCOPS, West of Scotland Coronary Prevention Study **ZUTE**, Zutphen Elderly Study

# Annex 3: Definitions of major incident outcomes considered

| End point (includes both fatal and non-fatal) | ICD-10 codes                               |
|-----------------------------------------------|--------------------------------------------|
| All cardiovascular                            | G45, I01, I03-I82, I87, I95-I99, F01, Q20- |
|                                               | Q28, R96                                   |
| Myocardial infarction (MI)                    | 121, 122, 123                              |
| Coronary disease non-MI                       | I24-I25                                    |
| All stroke                                    | F01, I60-I69                               |
| Ischaemic stroke                              | I63                                        |
| Haemorrhagic stroke                           | I61                                        |
| Subarachnoid haemorrhage                      | I60                                        |
| Unclassified stroke <sup>+</sup>              | I64                                        |
| Heart failure                                 | 150                                        |
| Other vascular deaths                         | I47-I49, I10-I15, R96, I71, I50            |
| Cardiac dysrhythmia                           | I47-I49                                    |
| Hypertensive disease                          | I10-I15                                    |
| Sudden death                                  | R96                                        |
| Aortic aneurysm                               | I71                                        |

† Unclassified stroke refers to ICD codes I64 (ICD-10), 436 (ICD-9) or earlier ICD equivalents, or strokes not specified

as ischemic or haemorrhagic in study specific codes.

Corresponding ICD-6, 7 or 8 codes are used for ERFC studies that recorded outcomes using earlier ICD versions.

#### Annex 4. Statistical methods used for estimating years of life lost

We used three pieces of information to estimate reductions in life expectancy associated with alcohol consumption at baseline (henceforth "exposure groups" pre-defined as alcohol consumption  $>0-\le100$ ,  $>100-\le200$ ,  $>200-\le350$  and >350 grams/week):

(i) age-at-risk specific hazard ratios for all-cause (and cause-specific) mortality in each exposure group versus the reference (derived from the ERFC and UK Biobank);

(ii) population all-cause (and cause-specific) mortality rates (derived from the detailed mortality component of the CDC WONDER database of the US Centers for Disease Control and Prevention); and

(iii) prevalence of exposure groups in the population (derived from the ERFC and UK Biobank).

We estimated population survival curves for each exposure group, utilising estimated age-at-risk specific hazard ratios for mortality by exposure groups in the ERFC, and UK Biobank and routine statistics on overall population mortality rates. We estimated reductions in life-expectancy as differences in areas under any two survival curves compared. To calculate an appropriate mortality rate for the reference group (i.e. defined as those drinking  $>0-\leq100$  grams/week), we used ERFC and UK Biobank data on exposure prevalence estimates, as described below.

Age-at-risk specific hazard ratios for mortality by exposure groups were estimated from ERFC and UK Biobank data separately for each sex. Specifically, a Cox regression model stratified by cohort and trial arm (where applicable) was fitted separately for each sex using a dataset in which participant ages-at-risk were deterministically updated by splitting the follow up times every 5-years and recalculating an age-at-risk variable at the beginning of each 5-year interval of follow up. Interactions between baseline exposure groups and linear and quadratic terms for the age-at-risk variable were included in the model to obtain smoothed hazard ratios. Thus, for participant *i* in stratum *s* with exposure group indicator variable  $E_{si(j)}$  (i.e. dummy variable equal to 1 if in exposure group is *j* and zero otherwise) the log hazard rate at time *t* since baseline was modelled as:

$$\log(h_{si}(t)) = \log(h_{s0}(t)) + \sum_{j=1}^{3} \gamma_{0j} E_{si(j)} + \beta_1 agerisk_{si} + \beta_2 agerisk_{si}^2 + \sum_{j=1}^{3} \gamma_{1j} E_{si(j)} \times agerisk_{si} + \sum_{j=1}^{3} \gamma_{2j} E_{si(j)} \times agerisk_{si}^2$$
(1)

from which the age-at-risk specific hazard ratios (and 95% CIs) for mortality were obtained as linear combinations of the relevant estimated coefficients, with age-at-risk fixed at values corresponding to midpoints of 5-year age-groups from age 40 onwards.

Population all-cause (and cause-specific) mortality rates per 100,000 were obtained in 5-year age-groups for the US population during years 2007-2010 from the Center for Disease Control (CDC) WONDER online database (https://wonder.cdc.gov/ucd-icd10.html), as well as for 15 EU countries during year 2000 (http://ec.europa.eu/eurostat/data/database). Because the mortality rates were provided only up to age-group 80-84 years, but we desired to estimate the overall population survival curves, we used a Poisson regression model with linear and quadratic terms for the midpoints of 5-year age-groups to smooth and extrapolate the mortality rates. Next, assuming exponential survival (i.e. constant hazard) within each 5-year age group, we estimated the age-specific survival probability as  $S_a = exp(-5 \times IR_a)$  and derived the overall population survival curves from age 35 onwards as the product of the relevant age-group specific survival probabilities.

 $p(survival|agerisk \ge 35) = \prod_{agerisk \ge 35} S_a$  (2)

In order to infer population mortality rates appropriate for the reference exposure group used in our estimation of agespecific hazard ratios (i.e. defined as those drinking >0- $\leq$ 100 grams/week), we used logistic regression to model the agespecific prevalence of the alchol consumption categories in ERFC and UK Biobank cohorts by sex and decade of recruitment. We used the age-specific prevalence estimates for the decade commencing in the year 1990 to infer the agespecific mortality rates appropriate for our reference group  $IR_{a0}$  as:<sup>1</sup>

$$IR_{a0} = \frac{IR_a}{p_{a0} + \sum_{j=1}^3 p_{aj} \times RR_{aj}}$$
(3)

Where  $IR_a$  is the population mortality rate for age group a,  $p_{aj}$  is the age-specific prevalence of exposure group j, and  $RR_{aj}$  is the age-specific hazard ratio in comparison of exposure group j versus reference group (j = 0). The age-specific mortality rates in each of the non-reference exposure groups were then inferred in turn by multiplying the age-specific mortality rate for the reference group  $IR_{a0}$  by the age-specific hazard ratios  $RR_{aj}$  based on ERFC and UK Biobank data and equation (2) above used to infer the exposure group-specific population survival curves. Finally, reductions in life expectancy according to baseline exposure groups were estimated as difference in the areas under the survival curves for the reference group and each of the non-reference exposure groups in turn. The areas under curves were calculated by numerical integration.

Monte Carlo simulation was used to calculate confidence intervals for the estimated reductions in life expectancy, taking into account uncertainty in the age-at-risk specific hazard ratios calculated from equation (1) above. In particular, new parameter estimates were randomly drawn from the multivariate normal distribution defined by the fitted model mean and covariance matrix, 200 times, and the above procedure repeated for each draw to calculate reductions in life-expectancy for each index age of interest. Assuming asymptotic normality, the standard deviation of the 200 Monte Carlo estimates of reductions in life expectancy for each index age were used to calculate 95% confidence intervals around the originally estimated value. Histograms were inspected to judge that normality assumption was reasonable.

#### **Appendix References**

1 Woloshin S, Schwartz LM, Welch HG. The risk of death by age, sex, and smoking status in the United States: putting health risks in context. J Natl Cancer Inst 2008;100(12):845-53.

## **Annex 5. Supplementary Tables/Figures**

eTable 1: Alcohol consumption ascertainment methods for 83 studies in the ERFC, EPIC-CVD and UK Biobank.

**eTable 2:** Summary of individual-level baseline characteristics, mortality and major cardiovascular outcomes by baseline alcohol consumption categories.

eTable 3: Summary of events for each study (83 studies), restricted to current drinkers.

**eTable 4.** Comparison of baseline characteristics of individuals used in main analysis versus individuals with repeat measures of alcohol consumption or measures of lifetime alcohol consumption from the contributing data sources.

**eTable 5.** Hazard ratios for cardiovascular outcomes amongst current drinkers, without and with adjustment for usual or baseline levels of potential confounders, mediators and proxies thereof.

**eTable 6.** Hazard ratios for death from lung cancer and digestive related cancer outcomes per 100 grams/wk higher usual alcohol consumption amongst current drinkers, without and with adjustment for usual or baseline levels of potential confounders, mediators and proxies thereof.

**eTable 7:** Sex-specific hazard ratios for major cardiovascular outcomes per 100 grams/week increase in usual alcohol consumption amongst current drinkers.

**eTable 8:** Sensitivity analyses: Hazard ratios for major cardiovascular outcomes per 100 grams/week increase in usual alcohol consumption amongst current drinkers.

eTable 9: Baseline characteristics by frequency of baseline alcohol consumption.

eTable 10: Baseline characteristics by type of baseline alcohol predominantly consumed.

eFigure 1: Flow diagram of study selection process in current analysis.

**eFigure 2:** Box plots of baseline alcohol consumption amongst current drinkers from 83 studies by decade of first baseline survey.

eFigure 3a: Cross-sectional associations between baseline alcohol consumption and continuous baseline characteristics.

eFigure 3b: Cross-sectional associations between baseline consumption and categorical baseline characteristics.

**eFigure 4:** Shape of association of baseline alcohol consumption with all-cause mortality and all cardiovascular disease amongst current drinkers.

eFigure 5. Shape of association of usual alcohol consumption with all-cause mortality for males and females.

eFigure 6. Shape of association of usual alcohol consumption with all-cause mortality by age-specific groups.

eFigure 7. Shapes of associations of usual alcohol consumption with fatal and non-fatal major cardiovascular causes.

eFigure 8. Shapes of associations of usual alcohol consumption with type of stroke.

**eFigure 9a:** Hazard ratios per 100 grams/week higher usual alcohol consumption for subtypes of cardiovascular outcomes amongst current drinkers, adjusted for body mass index.

**eFigure 9b.** Shape of association of usual alcohol consumption with all-cause mortality and all cardiovascular disease amongst current drinkers, adjusted for body mass index.

**eFigure 10**: Shape of association between baseline alcohol consumption, including ex- and non-drinkers, with all-cause mortality and cardiovascular disease.

**eFigure 11:** Hazard ratios per 100 grams/week higher baseline alcohol consumption for subtypes of cardiovascular outcomes amongst current drinkers with recorded baseline alcohol consumption (left) compared against all current drinkers using multiple imputation (right).

**eFigure 12:** Shapes of associations of baseline alcohol consumption with stroke and coronary outcomes amongst alcohol drinkers.

**eFigure 13:** Best fitting 2<sup>nd</sup> degree fractional polynomial for the modelled shape of association between baseline alcohol consumption with all-cause mortality.

**eFigure 14:** Hazard ratios per 100 grams/week higher usual alcohol consumption for subtypes of cardiovascular outcomes amongst current drinkers from a fixed-effect meta-analysis.

**eFigure 15:** Hazard ratios per 100 grams/week higher usual alcohol consumption for subtypes of cardiovascular outcomes amongst current drinkers, from fixed-effect analysis with inclusion of studies with fewer than 5 outcomes of a particular type.

**eFigure 16:** Shape of association between usual alcohol consumption with major vascular restricted to ERFC studies recording both coronary death and non-fatal MI endpoints.

**eFigure 17**: Shapes of associations of baseline alcohol consumption with all-cause mortality by (a) consumption frequency, (b) consumption type and (c) binge drinking status.

**eFigure 18**: Hazard ratios per 100 grams/week higher alcohol consumption for all-cause mortality and different cardiovascular outcomes amongst current drinkers and by alcohol type.

**eFigure 19a-e:** Hazard ratios per 100 gram/week increase in usual alcohol consumption for major vascular outcomes and all cause mortality amongst current drinkers by study/cohort-level characteristics.

**eFigure 20a-e:** Hazard ratios per 100 gram/week increase in usual alcohol consumption for major cardiovascular outcomes amongst current drinkers by individual-level characteristics.

**eFigure 21.** Funnel plots and assessment of small-study effects for study-specifc hazard ratios per 100 gram/week increase in usual alcohol consumption for major vascular outcomes amongst current drinkers.

**eFigure 22.** Estimated future years of life lost in individuals reporting drinking above a range of hypothetical alcohol consumption thresholds compared to those reporting drinking less than the hypothetical alcohol consumption thresholds.

| Study                  | Ascertainment method of<br>alcohol consumption | Format of ascertainment                     | Calculated or<br>Reported <sup>1</sup> |  |  |
|------------------------|------------------------------------------------|---------------------------------------------|----------------------------------------|--|--|
| AFTCAPS                | Questionnaire                                  | Self administered                           | Calculated                             |  |  |
| ARIC                   | Dietary survey                                 | Interview                                   | Calculated                             |  |  |
| ATENA                  | FFQ                                            | Self administered                           | Reported                               |  |  |
| ATTICA                 | FFQ                                            | Self administered                           | Calculated                             |  |  |
| AUSDIAB                | FFQ                                            | Self administered                           | Calculated                             |  |  |
| BHS                    | Lifestyle questionnaire                        | Self administered                           | Reported                               |  |  |
| BRUN                   | Questionnaire<br>FFQ<br>Diet record            | Interview<br>Interview<br>Self administered | Calculated                             |  |  |
| BWHHS                  | Questionnaire                                  | Self administered                           | Calculated                             |  |  |
| CAPS                   | Questionnaire                                  | Unknown                                     | Calculated                             |  |  |
| CASTEL                 | Questionnaire                                  | Self administered                           | Reported                               |  |  |
| CHARL                  | Dietary survey/ questionnaire                  | Interview / Self administered               | Calculated                             |  |  |
| CHS1                   | Unknown                                        | Unknown                                     | Calculated                             |  |  |
| CHS2                   | Unknown                                        | Unknown                                     | Calculated                             |  |  |
| COPEN                  | Questionnaire                                  | Self administered                           | Reported                               |  |  |
| DESIR                  | Questionnaire                                  | Self administered                           | Unknown                                |  |  |
| DRECE                  | 24hr recall / FFQ                              | Interview                                   | Calculated                             |  |  |
| DUBBO                  | Questionnaire                                  | Interview                                   | Calculated                             |  |  |
| EAS                    | Questionnaire                                  | Self administered                           | Calculated                             |  |  |
| EPESEBOS               | Questionnaire                                  | Interview                                   | Reported                               |  |  |
| EPESEIOW               | Questionnaire                                  | Interview                                   | Reported                               |  |  |
| EPESENCA               | Questionnaire                                  | Interview                                   | Reported                               |  |  |
| EPESENHA               | Questionnaire                                  | Interview                                   |                                        |  |  |
| EPIC-CVD               | 24hr recall / FFQ / 7-day diary                | Interview / Self administered               | Reported                               |  |  |
| ESTHER                 |                                                | Self administered                           | Calculated                             |  |  |
| FINNMARK               | FFQ<br>Questionnaire                           | Self administered                           | Calculated                             |  |  |
| FINNMARK<br>FINRISK92  | Questionnaire                                  | Self administered                           | Calculated                             |  |  |
| FINRISK92<br>FINRISK97 | Questionnaire                                  | Self administered                           | Reported                               |  |  |
| FINRISK97<br>FLETCHER  | Questionnaire                                  | Self administered                           | Reported                               |  |  |
|                        | Unknown                                        | Self administered<br>Unknown                | Calculated                             |  |  |
| FUNAGATA<br>GLOSTPUP   |                                                | Unknown<br>Self administered                | Unknown                                |  |  |
| GLOSTRUP               | Questionnaire                                  |                                             | Calculated                             |  |  |
| GREPCO                 | Questionnaire                                  | Self administered                           | Reported                               |  |  |
| HBS                    | FFQ                                            | Self administered                           | Calculated                             |  |  |
| HCS                    | Questionnaire                                  | Self administered                           | Unknown                                |  |  |
| HIMS                   | Questionnaire                                  | Self administered                           | Reported                               |  |  |
| HISAYAMA               | FFQ                                            | Self administered                           | Calculated                             |  |  |
| HONOL                  | Questionnaire                                  | Interview                                   | Calculated                             |  |  |
| HPFS                   | FFQ                                            | Self administered                           | Calculated                             |  |  |
| HUBRO                  | Questionnaire                                  | Self administered                           | Calculated                             |  |  |
| IKNS                   | Questionnaire                                  | Interview                                   | Calculated                             |  |  |
| KARELIA                | Questionnaire                                  | Self administered                           | Calculated                             |  |  |
| KIHD                   | Questionnaire                                  | Self administered                           | Reported                               |  |  |
| LASA                   | Questionnaire                                  | Interview                                   | Calculated                             |  |  |
| MATISS83               | FFQ / dietary recall                           | Self administered / Interview               | Reported                               |  |  |
| MATISS87               | FFQ / dietary recall                           | Self administered / Interview               | Reported                               |  |  |
| MATISS93               | FFQ / dietary recall                           | Self administered / Interview               | Reported                               |  |  |
| MCVDRFP                | Questionnaire                                  | Self administered                           | Calculated                             |  |  |
| MESA                   | FFQ                                            | Interview / Self administered               | Calculated                             |  |  |
| MONICA_KORA1           | Dietary survey                                 | Interview                                   | Calculated                             |  |  |
| MONICA_KORA2           | Dietary survey                                 | Interview                                   | Calculated                             |  |  |
| MONICA_KORA3           | Dietary survey                                 | Interview                                   | Calculated                             |  |  |
| MICOL                  | Questionnaire                                  | Self administered                           | Reported                               |  |  |
| MRCOLD                 | Questionnaire                                  | Interview                                   | Calculated                             |  |  |
| MRFIT                  | Questionnaire                                  | Self administered                           | Calculated                             |  |  |

**eTable 1**: Alcohol consumption ascertainment methods for 83 studies in the ERFC, EPIC-CVD and UK Biobank.

Continued over page

| Study      | Ascertainment method of alcohol consumption    | Format of ascertainment | Calculated or<br>Reported <sup>1</sup> |
|------------|------------------------------------------------|-------------------------|----------------------------------------|
| NFR        | Unknown                                        | Self administered       | Reported                               |
| NHANES I   | Questionnaire                                  | Interview               | Calculated                             |
| NHANES III | Questionnaire                                  | Interview               | Calculated                             |
| NPHS II    | Questionnaire                                  | Self administered       | Calculated                             |
| NSHS       | FFQ                                            | Self administered       | Reported                               |
| OPPHED     | Questionnaire                                  | Self administered       | Calculated                             |
| OSAKA      | Questionnaire                                  | Interview               | Calculated                             |
| OSLO2      | Questionnaire                                  | Self administered       | Calculated                             |
| PRHHP      | 24hr recall                                    | Interview               | Calculated                             |
| PRIME      | Quantitative recall frequency<br>questionnaire | Interview               | Calculated                             |
| PROCAM     | Questionnaire                                  | Unknown                 | Calculated                             |
| PROSPER    | Questionnaire                                  | Unknown                 | Calculated                             |
| QUEBEC     | Questionnaire                                  | Self administered       | Calculated                             |
| RANCHO     | Questionnaire                                  | Interview               | Calculated                             |
| RS_I       | Dietary interview                              | Interview               | Calculated                             |
| RS_II      | Dietary interview                              | Interview               | Unknown                                |
| RS_III     | Dietary interview                              | Interview               | Unknown                                |
| SHHEC      | 7-day recall                                   | Self administered       | Calculated                             |
| SHIP       | Unknown                                        | Unknown                 | Unknown                                |
| TOYAMA     | Questionnaire                                  | Self administered       | Unknown                                |
| TROMS      | Questionnaire                                  | Self administered       | Calculated                             |
| TROMSØ     | Questionnaire                                  | Self administered       | Calculated                             |
| ULSAM      | FFQ                                            | Self administered       | Reported                               |
| UK Biobank | Questionnaire                                  | Self administered       | Reported                               |
| WCWC       | Questionnaire                                  | Interview               | Unknown                                |
| WHIHABPS   | FFQ                                            | Self administered       | Calculated                             |
| WHITE I    | FFQ/ Dietary recall                            | Self administered       | Calculated                             |
| WHITE II   | FFQ                                            | Self administered       | Calculated                             |
| WOSCOPS    | Dietary recall                                 | Self administered       | Reported                               |
| ZUTE       | Cross-check dietary history                    | Interview               | Calculated                             |

**eTable 1** (continued): Alcohol consumption ascertainment methods for 83 studies in the ERFC, EPIC-CVD and UK Biobank.

<sup>1</sup>Calculated: alcohol amount is the product of the reported frequency (eg, more than once per day, more than once per month) and the individual reported intake per occasion (eg, 2 glasses on each occasion). Reported: alcohol amount is provided within a specified time period (eg, number of glasses in the past week)

FFQ=food frequency questionnaire.

|                                           | Ex-drink         | ers at baseline  |                  | r-drinkers at             |                    | nt drinkers at             | >0-≤              | 50g/wk           | >50-              | ≤100g/wk         | >100-;           | ≤150g/wk         | >150             | -≤250g/wk      | >250             | 0-≤350g/wk       | ≥                | 350g/wk          |
|-------------------------------------------|------------------|------------------|------------------|---------------------------|--------------------|----------------------------|-------------------|------------------|-------------------|------------------|------------------|------------------|------------------|----------------|------------------|------------------|------------------|------------------|
| Characteristics                           | Ν                | Mean (SD) /<br>% | Ν                | baseline<br>Mean (SD) / % | N                  | seline<br>Mean (SD)<br>/ % | N                 | Mean (SD) /<br>% | Ns                | Mean (SD) /<br>% | Ν                | Mean (SD)<br>/ % | N                | Mean (SD)      | Ν                | Mean (SD) /<br>% | Ν                | Mean (SD) /<br>% |
| Age at baseline (years)                   | 29,726           | 60.0 (8.8)       | 53,851           | 58.0 (9.8)                | 599,912            | 57.2 (8.7)                 | 177,956           | 57.3 (9.3)       | 128,094           | 57.0 (8.6)       | 94,653           | 57.4 (8.4)       | 94,760           | 57.2 (8.2)     | 52,020           | 56.6 (8.2)       | 52,429           | 56.4 (7.9)       |
| Sex                                       | 29,726           |                  | 53,851           |                           | 599,912            |                            | 177,956           |                  | 128,094           |                  | 94,653           |                  | 94,760           |                | 52,020           |                  | 52,429           |                  |
| Male                                      | 14,542           | 48.9%            | 15,962           | 29.6%                     | 334,002            | 55.7%                      | 70,698            | 39.7%<br>60.3%   | 59,458            | 46.4%<br>53.6%   | 53,158           | 56.2%<br>43.8%   | 64,253           | 67.8%<br>32.2% | 40,332           | 77.5%            | 46,103           | 87.9%            |
| Female                                    | 15,184           | 51.1%            | 37,889           | 70.4%                     | 265,910            | 44.3%                      | 107,258           | 60.3%            | 68,636            | 55.0%            | 41,495           | 43.8%            | 30,507           | 32.2%          | 11,688           | 22.5%            | 6,326            | 12.1%            |
| Ethnicity                                 | 21,577           | <b>5</b> 0.00/   | 37,730           | 50.000                    | 453,102            | 00.004                     | 118,519           | 00.00/           | 97,754            | 01.50            | 75,412           | 05.004           | 76,561           | 00.000         | 42,894           | 00.004           | 41,962           | 02.201           |
| White<br>Non-white                        | 17,227<br>4,350  | 79.8%<br>20.1%   | 19,685<br>18,045 | 52.2%<br>47.8%            | 420,668<br>32,434  | 92.8%<br>7.2%              | 106,584<br>11,935 | 89.9%<br>10.1%   | 92,349<br>5,405   | 94.5%<br>5.5%    | 71,898<br>3,514  | 95.3%<br>4.7%    | 71,148<br>5,413  | 92.9%<br>7.1%  | 39,600<br>3,294  | 92.3%<br>7.7%    | 39,089<br>2,873  | 93.2%<br>6.9%    |
| Ton white                                 | 4,550            | 20.170           | 10,045           | 47.070                    | 52,151             | 7.270                      | 11,555            | 10.170           | 5,105             | 5.570            | 5,514            | 4.776            | 5,115            | 7.170          | 3,294            | 7.770            | 2,075            | 0.970            |
| Smoking status                            | 29,726           | 70.5%            | 53,851           | 05 404                    | 599,912<br>471.827 | 70 70                      | 177,956           | 01.20/           | 128,094           | 02.20            | 94,653           | 80.8%            | 94,760<br>73,888 | 78.0%          | 52,020<br>37,061 | 71.00/           | 52,429<br>32,953 | <b>(2</b> 0)/    |
| Not current<br>Current                    | 23,618<br>6,108  | 79.5%<br>20.5%   | 45,991<br>7,860  | 85.4%<br>14.6%            | 4/1,82/<br>128,085 | 78.7%<br>21.3%             | 144,698<br>33,258 | 81.3%<br>18.7%   | 106,747<br>21,347 | 83.3%<br>16.7%   | 76,480<br>18,173 | 80.8%<br>19.2%   | 20,872           | 78.0%<br>22.0% | 37,061 14,959    | 71.2%<br>28.8%   | 32,953<br>19,476 | 62.9%<br>37.1%   |
|                                           | ·                | 20.070           | <i>,</i>         | 14.070                    | ,                  | 21.570                     |                   | 10.770           | ,                 | 10.770           | ,                | 19.270           | , í              | 22.070         |                  | 20.070           | ,                | 57.170           |
| Level of education                        | 25,540           | 0.0%             | 36,845           | 10 (0)                    | 519,896            | 0.40/                      | 155,700           | 7 404            | 112,538           | 1.20/            | 82,316           | 0.00             | 81,392           | 5.20/          | 43,992           | 1.6.00/          | 43,958           | 10.50            |
| No schooling/Primary<br>Secondary         | 2,359<br>13,696  | 9.2%<br>53.6%    | 6,863<br>17,140  | 18.6%<br>46.5%            | 43,468<br>208,928  | 8.4%<br>40.2%              | 11,555<br>68,795  | 7.4%<br>44.2%    | 4,859<br>43,851   | 4.3%<br>39.0%    | 7,569<br>30,336  | 9.2%<br>36.9%    | 4,319<br>31,087  | 5.3%<br>38.2%  | 7,043<br>16,944  | 16.0%<br>38.5%   | 8,123<br>17,915  | 18.5%<br>40.8%   |
| Vocational/ University                    | 9,485            | 37.1%            | 12,842           | 34.9%                     | 267,500            | 51.4%                      | 75,350            | 48.4%            | 63,828            | 56.7%            | 44,411           | 54.0%            | 45,986           | 56.5%          | 20,005           | 45.5%            | 17,910           | 40.8%            |
|                                           |                  |                  |                  |                           |                    |                            |                   |                  |                   |                  |                  |                  |                  |                |                  |                  |                  |                  |
| Occupation<br>Not working                 | 21,821<br>10,105 | 46.3%            | 38,723<br>17,732 | 45.8%                     | 456,400<br>158,781 | 34.8%                      | 125,046<br>46,712 | 37.4%            | 101,556<br>36,082 | 35.5%            | 71,196<br>24,915 | 35.0%            | 78,116<br>25,441 | 32.6%          | 40,431<br>12,911 | 31.9%            | 40,055<br>12,720 | 31.8%            |
| Manual                                    | 2,292            | 10.5%            | 6,574            | 45.8%                     | 54,701             | 12.0%                      | 12,299            | 9.8%             | 8,729             | 8.6%             | 7,604            | 10.7%            | 9,910            | 12.7%          | 7,421            | 18.4%            | 8,738            | 21.8%            |
| Office                                    | 6,389            | 29.3%            | 8,951            | 23.1%                     | 189,885            | 41.6%                      | 47,646            | 38.1%            | 45,163            | 44.5%            | 31,592           | 44.4%            | 35,221           | 45.1%          | 15,556           | 38.5%            | 14,707           | 36.7%            |
| Other                                     | 3,035            | 13.9%            | 5,466            | 14.1%                     | 53,033             | 11.6%                      | 18,389            | 14.7%            | 11,582            | 11.4%            | 7,085            | 10.0%            | 7,544            | 9.7%           | 4,543            | 11.2%            | 3,890            | 9.7%             |
| Total physical activity                   | 1,253            |                  | 1,962            |                           | 23,796             |                            | 9,756             |                  | 4,926             |                  | 2,539            |                  | 3,051            |                | 1,734            |                  | 1,790            |                  |
| Inactive                                  | 136              | 10.9%            | 102              | 5.2%                      | 4,426              | 18.6%                      | 1,335             | 13.7%            | 946               | 19.2%            | 586              | 23.1%            | 703              | 23.0%          | 453              | 26.1%            | 403              | 22.5%            |
| Moderately inactive                       | 329              | 26.3%            | 372              | 19.0%                     | 7,484              | 31.5%                      | 3,014             | 30.9%            | 1,532             | 31.1%            | 839              | 33.0%            | 964              | 31.6%          | 541              | 31.2%            | 594              | 33.2%            |
| Moderately active                         | 662              | 52.8%            | 1,279            | 65.2%                     | 9,728              | 40.9%                      | 4,483             | 46.0%            | 2,009             | 40.8%            | 904              | 35.6%            | 1,114            | 36.5%          | 583              | 33.6%            | 635              | 35.5%            |
| Active<br>History of diabetes             | 126<br>29,726    | 10.1%            | 209<br>53,851    | 10.7%                     | 2,158<br>599,912   | 9.1%                       | 924<br>177,956    | 9.5%             | 439<br>128,094    | 8.9%             | 210<br>94,653    | 8.3%             | 270<br>94,760    | 8.9%           | 157<br>52,020    | 9.1%             | 158<br>52,429    | 8.8%             |
| No                                        | 26,932           | 90.6%            | 50,042           | 92.9%                     | 577,650            | 96.3%                      | 170,595           | 95.9%            | 124,004           | 96.8%            | 91,413           | 96.6%            | 91,479           | 96.5%          | 49,965           | 96.1%            | 50,194           | 95.7%            |
| Yes                                       | 2,794            | 9.4%             | 3,809            | 7.1%                      | 22,262             | 3.7%                       | 7,361             | 4.1%             | 4,090             | 3.2%             | 3,240            | 3.4%             | 3,281            | 3.5%           | 2,055            | 4.0%             | 2,235            | 4.3%             |
| SBP (mmHg)                                | 28,561           | 137 (20)         | 52,205           | 137 (20)                  | 588,675            | 136 (19)                   | 173,510           | 135 (19)         | 126,769           | 135 (19)         | 93,401           | 137 (19)         | 93,153           | 137 (18)       | 51,216           | 137.9 (19)       | 51,432           | 140 (19)         |
| HDL-C (mmol/l)                            | 13,208           | 1.31 (0.37)      | 26,611           | 1.38 (0.36)               | 221,727            | 1.38 (0.39)                | 79,285            | 1.34 (0.38)      | 38,518            | 1.38 (0.39)      | 32,916           | 1.40 (0.40)      | 27,485           | 1.40 (0.39)    | 20,895           | 1.43 (0.39)      | 22,628           | 1.44 (0.40)      |
| BMI (kg/m <sup>2</sup> )                  | 28,862           | 26.2 (5.1)       | 52,735           | 26.5 (4.8)                | 589,621            | 26.1 (4.2)                 | 173,729           | 26.0 (4.5)       | 126,769           | 25.8 (4.1)       | 92,837           | 25.9 (4.0)       | 93,807           | 26.0 (3.9)     | 51,072           | 26.2 (3.9)       | 51,407           | 26.4 (4.0)       |
| Total cholesterol (mmol/l)                | 14,075           | 5.69 (1.10)      | 34,030           | 5.83 (1.10)               | 250,332            | 5.81 (1.11)                | 88,335            | 5.77 (1.10)      | 43,479            | 5.79 (1.09)      | 36,149           | 5.81 (1.12)      | 32,083           | 5.83 (1.07)    | 24,083           | 5.89 (1.10)      | 26,203           | 5.90 (1.16)      |
| Fibrinogen (µmol/l)                       | 6,129            | 9.21 (2.20)      | 17,726           | 8.99 (1.87)               | 89,957             | 9.01 (2.07)                | 28,845            | 9.20 (2.05)      | 16,048            | 9.01 (2.01)      | 12,011           | 8.94 (2.02)      | 15,207           | 8.98 (2.06)    | 8,411            | 8.90 (2.13)      | 9,435            | 8.80 (2.21)      |
| Smoking amount (pack<br>years)            | 13,447           | 18.6 (15.1)      | 41,553           | 6.74 (10.5)               | 252,036            | 17.0 (11.8)                | 81,518            | 13.1 (10.2)      | 55,050            | 16.3 (9.5)       | 39,147           | 18.1 (9.9)       | 34,339           | 20.0 (12.4)    | 21,812           | 21.5 (14.5)      | 20,170           | 25.8 (17.4)      |
| Self-reported general health              | 17,704           | 0.59 (0.27)      | 22,366           | 0.60 (0.26)               | 382,490            | 0.64 (0.22)                | 109,540           | 0.64 (0.23)      | 90,195            | 0.66 (0.22)      | 62,584           | 0.67 (0.22)      | 64,568           | 0.65 (0.22)    | 28,343           | 0.62 (0.23)      | 27,260           | 0.60 (0.24)      |
| (0-1)<br>All-cause mortality              | 3,777            | 12.9%            | 5,714            | 10.7%                     | 40,317             | 6.9%                       | 14,036            | 8.1%             | 7,479             | 6.0%             | 5,574            | 6.0%             | 5,475            | 5.9%           | 3,431            | 6.7%             | 4,322            | 8.4%             |
| All cardiovascular disease                | 2,436            | 8.6%             | 3,763            | 7.3%                      | 26,260             | 4.5%                       | 8,665             | 5.2%             | 5,111             | 4.2%             | 3,682            | 4.0%             | 3,905            | 4.3%           | 2,347            | 4.7%             | 2,550            | 5.0%             |
| All stroke                                | 813              | 2.7%             | 1,473            | 2.7%                      | 12,098             | 2.0%                       | 4,516             | 2.5%             | 2,412             | 1.9%             | 1,485            | 1.6%             | 1,582            | 1.7%           | 1,005            | 1.9%             | 1,098            | 2.1%             |
| Myocardial infarction                     | 1,020            | 3.4%             | 1,378            | 2.6%                      | 14,545             | 2.4%                       | 5,458             | 3.1%             | 2,865             | 2.2%             | 1,809            | 1.9%             | 1,970            | 2.1%           | 1,172            | 2.3%             | 1,271            | 2.4%             |
| Coronary disease non-MI                   | 484              | 1.6%             | 531              | 1.0%                      | 8,039              | 1.3%                       | 2,686             | 1.5%             | 1,639             | 1.3%             | 1,016            | 11%              | 1,270            | 1.3%           | 695              | 1.3%             | 733              | 1.4%             |
| Heart failure<br>Death from other type of | 461<br>106       | 1.6%<br>0.4%     | 755<br>151       | 1.5%<br>0.3%              | 2,748<br>1,160     | 0.5%<br>0.2%               | 1,034<br>370      | 0.6%<br>0.2%     | 492<br>192        | 0.4%<br>0.2%     | 472<br>163       | 0.5%<br>0.2%     | 351<br>157       | 0.4%<br>0.2%   | 181<br>133       | 0.4%<br>0.3%     | 218<br>145       | 0.4%<br>0.3%     |
| cardiovascular diease                     | 100              | 0.470            | 151              | 0.370                     | 1,100              | 0.270                      | 370               | 0.270            | 174               | 0.270            | 105              | 0.270            | 157              | 0.270          | 155              | 0.370            | 145              | 0.370            |
| - alo rascalat diouse                     |                  |                  |                  |                           |                    |                            |                   |                  |                   |                  |                  |                  |                  |                |                  |                  |                  |                  |

| Cohort<br>abbreviation                                                                         | T otal<br>participants | All-cause<br>mortality | All<br>cardiovascular | All stroke        | Fatal stroke     | Non-fatal<br>stroke | Ischaemic<br>stroke | Haemorrhagic<br>stroke | Subarachnoid<br>haemorrhages | Unclassified<br>stroke | MI                | Non-fatal MI      | Fatal MI        | Coronary disease<br>excluding MI | Non-fatal<br>coronary disease<br>excluding MI | Fatal coronary<br>disease excluding<br>MI | Heart failure    | Fatal cardiac<br>dysrhythmia | Fatal<br>hypertensive<br>disease | Sudden death   | Fatal aortic<br>aneurysm |
|------------------------------------------------------------------------------------------------|------------------------|------------------------|-----------------------|-------------------|------------------|---------------------|---------------------|------------------------|------------------------------|------------------------|-------------------|-------------------|-----------------|----------------------------------|-----------------------------------------------|-------------------------------------------|------------------|------------------------------|----------------------------------|----------------|--------------------------|
| Case-cohort studie<br>EPIC-CVD                                                                 | 26036                  | 784                    | 12758                 | 5507              | 581              | 4926                | 3293                | 686                    | 353                          | 1146                   | 5919              | 4963              | 896             | 2045                             | 1675                                          | 370                                       | -                |                              | -                                |                | -                        |
| Nested case-control stua<br>FLETCHER                                                           | 572                    | -                      | 85                    | -                 | -                | -                   | -                   | -                      | -                            | -                      |                   |                   |                 | 85                               |                                               | -                                         | -                | -                            | -                                | -              | -                        |
| GLOSTRUP<br>HPFS                                                                               | 313<br>575             | 14<br>69               | 63<br>181             | - 6               | - 6              | -                   | 2                   | 2                      | -                            | - 1                    | 61<br>140         | 47<br>130         | 14<br>10        | 2<br>14                          | 2                                             | - 14                                      | -                | -                            | -                                | - 18           | 2                        |
| WHIHABPS<br>SUBTOTAL                                                                           | 108<br>1568            | 108<br>191             | 84<br>413             | 71<br>77          | 2 8              | 69<br>69            | 71 73               | 2                      | -                            | - 1                    | 9<br>210          | 9<br>186          | - 24            | 3<br>104                         | 2                                             | 3                                         | -                | -                            | -                                | - 18           | 2                        |
| Clinical trials<br>AFTCAPS                                                                     | 2566                   | 46                     | 117                   | 14                | -                | 14                  | 5                   |                        | -                            | 9                      | 51                | 50                | 1               | 38                               | 38                                            |                                           | 7                |                              | -                                | 5              |                          |
| MRFIT<br>PROSPER                                                                               | 3453<br>1710           | 239<br>104             | 218<br>181            | 18<br>45          | 4<br>2           | 14<br>43            | 1                   | 2                      | 1                            | 15<br>45               | 170<br>82         | 142<br>82         | 28              | 12<br>16                         |                                               | 12<br>16                                  | 4<br>33          | 5                            | 1                                | -              | 2                        |
| WOSCOPS<br>SUBTOTAL                                                                            | 5070<br>12799          | 149<br>538             | 293<br>809            | 50<br>127         | - 6              | 50<br>121           | - 6                 |                        | - 1                          | 50<br>119              | 188<br>491        | 188<br>462        | - 29            | 47                               | - 38                                          | 47                                        | - 44             | - 5                          | - 1                              | - 5            | 2                        |
| Prospective cohort studi<br>UKBIOBANK                                                          | es<br>326372           | 6720                   | 7469                  | 1616              | 108              | 1508                | 997                 | 214                    | 202                          | 181                    | 1953              | 1787              | 166             | 3404                             | 3126                                          | 278                                       | 255              | 4                            | 34                               |                | 65                       |
| ARIC                                                                                           | 5987<br>3483           | 1664<br>27             | 1365<br>21            | 352<br>3          | 30               | 322<br>3            | 273                 | 37<br>1                | 18<br>1                      | 15                     | 361<br>12         | 314<br>11         | 47<br>1         | 44                               | -                                             | 44                                        | 542              | 10<br>2                      | 25<br>2                          | -              | 7<br>1                   |
| ATENA<br>ATTICA                                                                                | 1053                   | 22                     | 13                    | -                 | -                | -                   | -                   | -                      | -                            | -                      | -                 | -                 | -               | -                                | -                                             |                                           | -                | -                            | -                                |                | -                        |
| AUSDIAB<br>BHS                                                                                 | 2996<br>3052           | 202<br>647             | 36<br>276             | 10<br>70          | 5<br>70          | 5                   | 2<br>5              | 1<br>6                 | 1                            | 5<br>51                | 16<br>94          | 14                | 2<br>94         | 9<br>68                          | 3                                             | 6<br>68                                   | 10               | - 4                          | 4                                | -              | 1<br>10                  |
| BRUN<br>BWHHS                                                                                  | 404<br>1561            | 142<br>395             | 73<br>132             | 29<br>63          | 11<br>20         | 18<br>43            | 21<br>1             | 8<br>3                 | 2                            | 51                     | 25<br>35          | 14<br>26          | 11<br>9         | 6<br>19                          | - 6                                           | 6<br>13                                   | 3<br>2           | 2                            | - 1                              | -              | 4<br>2                   |
| CAPS<br>CASTEL                                                                                 | 1878<br>2443           | 307<br>1072            | 224<br>514            | 15<br>101         | 15<br>101        | -                   | 3                   | -                      | -                            | 11<br>101              | 161<br>92         | 107               | 54<br>92        | 31                               |                                               | 31                                        | 221              |                              | -                                | 72             |                          |
| CHARL<br>CHS1                                                                                  | 142<br>2286            | 100<br>1139            | 24<br>691             | 5<br>204          | -1               | 5<br>203            | - 163               | 30                     | -                            | 5<br>11                | 12<br>251         | 7<br>177          | 5<br>74         | -                                | -                                             |                                           | 6<br>222         |                              | -                                | -              | -                        |
| CHS2<br>COPEN                                                                                  | 209<br>6552            | 79<br>2656             | 52<br>1613            | 17<br>470         | - 41             | 17<br>429           | 15<br>295           | 1<br>56                | - 13                         | 1<br>94                | 17<br>342         | 12<br>342         | 5               | 615                              | 615                                           | -                                         | 17<br>43         | - 4                          | - 16                             | -<br>9         | - 11                     |
| DESIR<br>DRECE                                                                                 | 3229<br>1824           | 63<br>107              | 29<br>24              | 12<br>5           | -<br>5           | 12                  | 7                   | 3<br>2                 | -                            | 2<br>3                 | 17<br>6           | 17                | -<br>6          | -7                               | -                                             | -7                                        | - 1              | -                            | - 1                              | -              | -                        |
| DUBBO<br>EAS                                                                                   | 1299<br>697            | 463<br>314             | 309<br>133            | 104<br>59         | 2<br>28          | 102<br>31           | 44<br>1             | 11<br>5                | 2<br>2                       | 45<br>43               | 126<br>41         | 126<br>22         | - 19            | 38<br>14                         | -                                             | 38<br>14                                  | 15<br>7          | 4<br>1                       | - 5                              | -              | 2<br>1                   |
| EPESEBOS<br>EPESEIOW                                                                           | 701<br>650             | 128<br>587             | 166<br>144            | 37<br>43          | - 4              | 37<br>39            | 27<br>19            | 6<br>5                 | 2                            | 2<br>18                | 37<br>27          | 32<br>21          | 5<br>6          | 35<br>30                         | 31<br>23                                      | 4<br>7                                    | 35<br>30         | 16<br>9                      | -                                | -              | 1                        |
| EPESENCA<br>EPESENHA                                                                           | 389<br>497             | 241<br>102             | 81<br>131             | 27<br>25          | 3<br>1           | 24<br>24            | 15<br>18            | 3                      | -                            | 9<br>4                 | 21<br>26          | 19<br>25          | 2               | 14<br>20                         | 9<br>20                                       | 5                                         | 15<br>22         | 4<br>25                      | -                                | -              | -                        |
| ESTHER<br>FINNMARK                                                                             | 4531<br>2837           | 111 113                | 285<br>29             | 56                | - 9              | 56                  | - 3                 | - 1                    | -2                           | 56<br>3                | 33<br>12          | 32                | 1<br>12         | - 4                              | -                                             | -4                                        | 196              | -                            | -                                |                | 2                        |
| FINRISK92<br>FINRISK97                                                                         | 3444<br>4256           | 148<br>118             | 321<br>325            | 63<br>48          | 7<br>2           | 56<br>46            | 37<br>36            | 23<br>10               | 1                            | 1                      | 51<br>45          | 46<br>40          | 5               | 4                                | -                                             | 4                                         | 193<br>219       | -                            | 1                                | 1              | 1                        |
| FUNAGATA<br>GREPCO                                                                             | 214<br>500             | 8                      | 15                    | 12                | 1                | 40                  | 8                   | 3                      | -                            | 1                      | 3                 | 3                 | -               | -                                | -                                             | -                                         | - 219            |                              | -                                | -              |                          |
| HBS<br>HCS                                                                                     | 46<br>2328             | 30<br>214              | 5<br>47               | 1                 | 1                | -                   | -                   | 1                      | -                            | 1                      | 10                |                   | - 10            | 4<br>11                          | -                                             | 4<br>11                                   | - 2              |                              | - 2                              | -              | - 9                      |
| HIMS                                                                                           | 5250                   | 2017                   | 938<br>123            | 288<br>75         | 32               | 256<br>72           | 140                 | 47                     | 3                            | 88                     | 308<br>25         | 235               | 73<br>2         | 169                              | 132                                           | 37                                        | 133              | 6                            | 2<br>9                           | -              | 10                       |
| HISAYAMA<br>HONOL                                                                              | 864<br>883             | 190<br>185             | 91                    | 43<br>42          | 3<br>15          | 28                  | 50<br>2             | 18<br>16<br>9          | 1                            | 23                     | 34                | 23<br>29          | 5               | 6                                | -                                             | 6                                         | 7                | 2                            | 1                                | -              | 3                        |
| HUBRO<br>IKNS<br>KARELIA                                                                       | 11498<br>2701          | 539<br>358<br>31       | 124<br>188<br>28      | 131               | 42<br>12         | 119                 | 6<br>69             | 24                     | 2<br>5                       | 13<br>33               | 28<br>30<br>13    | 14                | 28<br>16        | 8<br>4<br>2                      | -                                             | 8<br>4<br>2                               | 18               | 6<br>1                       | -                                | -              | 11<br>2                  |
| KIHD                                                                                           | 41<br>1805             | 512                    | 535                   | 5<br>126          | 1<br>14          | 4 112               | 1<br>86             | 33                     | 2                            | 4 3                    | 319               | 10<br>315         | 3<br>4          | 72                               | 69                                            | 23                                        | 2                | -                            | 2                                | -              | 5                        |
| LASA<br>MATISS83                                                                               | 1458<br>2004           | 396<br>364             | 60<br>251             | 10<br>71          | 6                | 10<br>65            | 20                  | 7                      | 1                            | 10<br>40               | 26<br>60          | 26<br>38          | 22              | 8                                | 2                                             | 6                                         | 24<br>38         | 54                           | 7                                | -              | -                        |
| MATISS87<br>MATISS93                                                                           | 1401<br>648            | 182<br>18              | 122<br>25             | 37<br>5           | -                | 37<br>5             | 7                   | 3                      | 1                            | 26<br>2                | 30<br>11          | 14<br>9           | 16<br>2         | 2<br>1                           | - 1                                           | 2                                         | 18<br>3          | 27<br>4                      | 3                                | -              | -                        |
| MCVDRFP<br>MESA                                                                                | 14655<br>2388          | 1106<br>161            | 274<br>85             | 56<br>39          | 56               | - 39                | 4<br>33             | 20<br>5                | 12                           | 18<br>1                | 92<br>30          | 30                | 92              | 26<br>13                         | -                                             | 26<br>13                                  | 15               | - 11                         | 3                                | 6              | 14                       |
| MICOL<br>MONICA_KORA1                                                                          | 15563<br>757           | 382<br>124             | 116<br>85             | 23<br>5           | 23<br>5          | -                   | 4                   | 2<br>2                 | -                            | 15<br>2                | 53<br>55          | - 38              | 53<br>17        | 32<br>4                          | -                                             | 32<br>4                                   | - 9              | -                            | -                                | - 1            | 1 2                      |
| MONICA_KORA2<br>MONICA_KORA3                                                                   | 2655<br>3022           | 177<br>378             | 83<br>177             | 3<br>30           | 3<br>30          | -                   | - 8                 | - 8                    | 1                            | 2<br>13                | 63<br>104         | 41<br>81          | 22<br>23        | 7<br>21                          | -                                             | 7<br>21                                   | 6<br>4           | 2                            | 1                                | 1<br>7         | -                        |
| MRCOLD<br>NFR                                                                                  | 4689<br>2768           | 2736<br>287            | 1111<br>103           | 340<br>24         | 340<br>24        | -                   | 22<br>2             | 27<br>7                | 4                            | 200<br>10              | 221<br>49         |                   | 221<br>49       | 281<br>25                        |                                               | 281<br>25                                 | 67               | 29                           | 14                               | -              | 37<br>3                  |
| NHANESI<br>NHANESIII                                                                           | 6828<br>3677           | 1482<br>753            | 915<br>225            | 191<br>51         | 62<br>51         | 129                 | 54                  | 24                     | 9                            | 98<br>51               | 301<br>33         | 162               | 139<br>33       | 228<br>64                        | 121                                           | 107<br>64                                 | 79<br>8          | 22                           | 22<br>11                         | -              | 11<br>3                  |
| NPHSII<br>NSHS                                                                                 | 2314<br>708            | 325<br>46              | 197<br>46             | 53<br>13          | 7<br>1           | 46<br>12            | 29                  | 5<br>1                 | 5                            | 14<br>12               | 124<br>3          | 113               | 11<br>3         | 1<br>30                          | 30                                            | 1                                         | -                | -                            | 3                                | 10             | 5                        |
| OPPHED<br>OSAKA                                                                                | 5793<br>7521           | 225<br>290             | 53<br>108             | 16<br>61          | 16<br>8          | 53                  | 2<br>21             | 5<br>14                | -4                           | 9<br>22                | 21<br>20          | 16                | 21<br>4         | 4<br>1                           | -                                             | 4<br>1                                    | 2<br>21          | 5<br>1                       | 1<br>1                           | -1             | 2                        |
| OSLO2<br>PRHHP                                                                                 | 3824<br>1439           | 701<br>188             | 164<br>80             | 45<br>10          | 45<br>7          | - 3                 | 6<br>5              | 16<br>4                | 3                            | 16                     | 42<br>39          | - 29              | 42<br>10        | 18<br>13                         | -7                                            | 18<br>6                                   | 13               | 9                            | 6<br>6                           | 7              | 8<br>3                   |
| PRIME<br>PROCAM                                                                                | 7946<br>10089          | 141<br>423             | 126<br>311            | 25<br>37          | 13               | 25<br>24            | 18<br>27            | 5<br>6                 | -                            | 2<br>4                 | 84<br>180         | 78<br>162         | 6<br>18         | 4<br>30                          | - 4                                           | 4<br>26                                   | -4               | -1                           | -                                | 12<br>37       | - 5                      |
| QUEBEC<br>RANCHO                                                                               | 2113<br>1353           | 543<br>558             | 414<br>354            | 89<br>132         | 4<br>7           | 85<br>125           | -                   | - 1                    | -                            | 89<br>125              | 253<br>149        | 229<br>148        | 24<br>1         | 14                               | -                                             | 14                                        | 6<br>7           | - 8                          | - 11                             | 46             | - 5                      |
| RS_I<br>RS_II                                                                                  | 3145<br>1119           | 820<br>117             | 440<br>80             | 144<br>17         | 70<br>7          | 74<br>10            | 20<br>2             | 14<br>2                | 2                            | 102<br>13              | 141<br>45         | 120<br>45         | 21              | -                                | -                                             | -                                         | 38<br>3          | -                            | -                                | 35<br>9        | 12<br>1                  |
| RS_III<br>SHHEC                                                                                | 2258<br>7919           | 28<br>417              | 6<br>410              | 1<br>88           | 1<br>5           | 83                  | 21                  | - 11                   | 12                           | 41                     | 208               | 168               | 40              | 1<br>100                         | -<br>86                                       | 1<br>14                                   | - 1              | - 1                          | -1                               | 1 2            | 1<br>4                   |
| SHIP<br>TOYAMA                                                                                 | 1746<br>2480           | 3<br>68                | 48<br>57              | 23<br>30          | -                | 23<br>30            | 12                  | 13                     | -<br>5                       | 23                     | 25<br>21          | 25<br>21          | -               | -                                | -                                             | -                                         | -3               | -                            | -                                | -              | -                        |
| TROMS<br>TROMSØ                                                                                | 1134<br>10024          | 26<br>862              | 9<br>592              | 244               | -<br>9           | 235                 | 178                 | 29                     | 23                           | - 11                   | 5<br>301          | 272               | 5<br>29         | 1<br>12                          | -                                             | 1<br>12                                   | - 3              | 1<br>2                       | 1<br>4                           | - 10           | 1<br>6                   |
| ULSAM<br>WCWC                                                                                  | 703<br>2310            | 326<br>222             | 258<br>12             | 79                | 6                | 73                  | 56                  | 11                     | 3                            | 7                      | 73<br>12          | 64<br>12          | 9               | 27                               | 12                                            | 15                                        | 64               | -                            | 3                                | -              | 4                        |
| WHITEI<br>WHITEII                                                                              | 3099<br>8776           | 1606<br>426            | 599<br>370            | 181<br>7          | 181<br>7         | -                   | 19<br>1             | 11                     | 3<br>1                       | 96<br>4                | 104<br>323        | 297               | 104<br>26       | 140<br>24                        | -                                             | 140<br>24                                 | 36               | 19                           | 6<br>1                           | -              | 51<br>3                  |
| ZUTE<br>SUBTOTAL                                                                               | 281                    | 142 38804              | 98<br>25038           | 36<br>6387        | 1583             | 36<br>4804          | 2917                | 835                    | 357                          | 36<br>1997             | 41 7925           | 40 6098           | 1 1827          | 5777                             | 4297                                          | 2 1480                                    | 8<br>2704        | 1<br>299                     | 218                              | 1<br>269       | 7                        |
| TOTAL<br>TOTAL events /                                                                        | 599912                 | 40317                  | 39018                 | 12098             | 2178             | 9920                | 6289                | 1523                   | 711                          | 3263                   | 14545             | 11709             | 2776            | 8039                             | 6012                                          | 1942                                      | 2748             | 304                          | 210                              | 292            | 345                      |
| participants (excluding<br>studies with fewer<br>than 5 events for that<br>particular outcome) |                        | 40310/<br>*584728      | 39018 /<br>599412     | 12090 /<br>585588 | 2142 /<br>532204 | 9910/<br>491050     | 6256 /<br>491204    | 1482 /<br>505948       | 663 /<br>412732              | 3215 /<br>527729       | 14539 /<br>594561 | 11706 /<br>515377 | 2748/<br>538117 | 7990/<br>523548                  | 6000 /<br>389976                              | 1889/<br>510147                           | 2711 /<br>447436 | 261 /<br>71682               | 178/<br>383269                   | 283 /<br>68002 | 289 /<br>423145          |

eTable 3: Summary of events for 83 studies, restricted to current drinkers.

\*All-cause mortality events derived only from the 13,670 participants in the random sub-cohort of EPIC-CVD, rather than from the much larger number of participants in the full prospective EPIC study

|                                            |                | ER                                                 | RFC           |                                                                |               | EPIC                                               | -CVD          |                                                            | UK Biobank           |                                                    |               |                                                               |  |
|--------------------------------------------|----------------|----------------------------------------------------|---------------|----------------------------------------------------------------|---------------|----------------------------------------------------|---------------|------------------------------------------------------------|----------------------|----------------------------------------------------|---------------|---------------------------------------------------------------|--|
|                                            |                |                                                    | measures      | Participants with repeat<br>measures of alcohol<br>consumption |               | All participants                                   |               | oants with<br>fetime alcohol<br>mption                     | All partici          | ipants                                             | measures      | s with repeat<br>of alcohol<br>mption                         |  |
| Number of studies/centres                  |                |                                                    | 35 studies    |                                                                | 22 centres    |                                                    | 17 centres    |                                                            | 1 study              |                                                    | 1 study       |                                                               |  |
| Current drinkers at baseline               | 247,504        |                                                    | 38            | ,472                                                           | 20            | 5,036                                              | 18,779        |                                                            | 326,372              |                                                    | 13,760        |                                                               |  |
| Alcohol consumption categories at baseline | n (%)          | Mean<br>baseline<br>alcohol<br>consumption<br>g/wk | n (%)         | Mean baseline /<br>resurvey<br>alcohol<br>consumption<br>g/wk  | n (%)         | Mean<br>baseline<br>alcohol<br>consumption<br>g/wk | n (%)         | Mean baseline /<br>lifetime alcohol<br>consumption<br>g/wk | n (%)                | Mean<br>baseline<br>alcohol<br>consumption<br>g/wk | n (%)         | Mean baseline<br>/ resurvey<br>alcohol<br>consumption<br>g/wk |  |
| >0- <u>≤</u> 25g/wk,                       | 53,418 (21.6%) | 10                                                 | 5,734 (14.9%) | 11 / 38                                                        | 7,906 (30.4%) | 10                                                 | 5,247 (27.9%) | 10 / 33                                                    | 39,641 (12.2%)       | 14                                                 | 1,320 (9.6%)  | 15 / 23                                                       |  |
| >25-≤50g/wk,                               | 33,953 (13.7%) | 36                                                 | 4,335 (11.3%) | 37 / 58                                                        | 3,704 (14.2%) | 37                                                 | 2,367 (12.6%) | 37 / 58                                                    | 39,334 (12.1%)       | 40                                                 | 1,663 (12.1%) | 40 / 43                                                       |  |
| >50-≤75g/wk,                               | 26,656 (10.8%) | 62                                                 | 3,591 (9.3%)  | 62 / 83                                                        | 2,748 (10.6%) | 62                                                 | 1,867 (9.9%)  | 62 / 80                                                    | 42,907 (13.2%)       | 64                                                 | 1,864 (13.6%) | 64 / 64                                                       |  |
| >75-≤100g/wk,                              | 16,557 (6.7%)  | 86                                                 | 2,936 (7.6%)  | 86 / 103                                                       | 2,446 (9.4%)  | 86                                                 | 1,813 (9.7%)  | 86 / 91                                                    | 36,780 (11.3%)       | 87                                                 | 1,645 (12.0%) | 87 / 82                                                       |  |
| >100-≤150g/wk                              | 36,236 (14.6%) | 124                                                | 5,617 (14.6%) | 127 / 129                                                      | 2,602 (10.0%) | 123                                                | 1,883 (10.0%) | 123 / 127                                                  | 55,815 (17.1%)       | 124                                                | 2,551 (18.5%) | 124 / 112                                                     |  |
| >150-≤250g/wk                              | 31,645 (12.8%) | 195                                                | 7,175 (18.7%) | 191 / 172                                                      | 3,090 (11.9%) | 193                                                | 2,447 (13.0%) | 193 / 182                                                  | 60,025 (18.4%)       | 194                                                | 2,633 (19.1%) | 194 / 171                                                     |  |
| >250-≤350g/wk                              | 23,607 (9.5%)  | 308                                                | 4,289 (11.2%) | 309 / 249                                                      | 1,744 (6.7%)  | 293                                                | 1,507 (8.0%)  | 294 / 249                                                  | 26,669 (8.2%)        | 292                                                | 1,131 (8.2%)  | 292 / 245                                                     |  |
| $\geq 350 g/wk$                            | 25,432 (10.3%) | 568                                                | 4,795 (12.5%) | 521 / 345                                                      | 1,796 (6.9%)  | 505                                                | 1,648 (8.8%)  | 507 / 403                                                  | 25,201 (7.7%)        | 515                                                | 953 (6.9%)    | 499 / 388                                                     |  |
| Age in years at baseline,<br>mean (SD)     | 57.1 (8        | 3.7)                                               | 55.3          | 3 (8.3)                                                        | 55.           | 0 (9.2)                                            | 54.9          | 9 (8.7)                                                    | 56.5 (8              | .0)                                                | 57.3          | (7.3)                                                         |  |
| Sex, n (%)                                 |                |                                                    |               |                                                                |               |                                                    |               |                                                            |                      |                                                    |               |                                                               |  |
| Male                                       | 162,685 (6     | 65.7%)                                             | 27,701        | (72.0%)                                                        | 13,508        | 8 (51.9%)                                          | 9,559         | (51.1%)                                                    | 157,809 (4           | 8.4%)                                              | 7,060         | (51.3)                                                        |  |
| Female                                     | 84,819 (3      | 4.3%)                                              | 10,771        | (28.0%)                                                        | 12,528        | 8 (48.1%)                                          | 9,180         | (48.9%)                                                    | 168,563 (5           | 1.6%)                                              | 6,700         | (48.7)                                                        |  |
| Smoking status, n (%)                      |                |                                                    |               |                                                                |               |                                                    |               |                                                            |                      |                                                    |               |                                                               |  |
| Not current                                | 161,037 (6     | ,                                                  | ,             | (65.8%)                                                        | ,             | 3 (67.6%)                                          | 12,693        | (67.6%)                                                    | 293,182 (8           | <i>,</i>                                           | ,             | (93.9%)                                                       |  |
| Current                                    | 86,467 (3      | 4.9%)                                              | 13,153        | (34.2%)                                                        | 8,428         | (32.4%)                                            | 6,086         | (32.4%)                                                    | 33,190 (10           | 0.2%)                                              | 842 (         | 6.1%)                                                         |  |
| History of diabetes, n(%)                  |                |                                                    |               |                                                                |               |                                                    |               |                                                            |                      |                                                    |               |                                                               |  |
| No                                         | 237,685 (9     | ,                                                  | 36,936        | (96.0%)                                                        | 24,875        | 5 (95.5%)                                          | 17,889        | (95.3%)                                                    | 315,090 (9           | 6.5%)                                              | 13,334        | (96.9%)                                                       |  |
| Yes                                        | 9,819 (4       | ,                                                  | ,             | (4.0%)                                                         | ,             | (4.5%)                                             |               | (4.7%)                                                     | 11,282 (3            | ,                                                  |               | 3.1%)                                                         |  |
| BMI in kg/m <sup>2</sup> , mean (SD)       | 26.1 (3        | 3.8)                                               | 26.0          | ) (3.5)                                                        | 26.           | 4 (4.1)                                            | 26.7          | 7 (4.2)                                                    | 27.0 (4              | .4)                                                |               | (4.2)                                                         |  |
| HDL-C in mmol/l, mean (SD)                 | 1.40 (0.       | .41)                                               | 1.41          | (0.40)                                                         | 1.40          | (0.42)                                             | 1.41          | (0.43)                                                     | not available at tin | ne of analysis                                     |               | le at time of<br>lysis                                        |  |
| Total cholesterol in mmol/l, mean (SD)     | 5.80 (1        | .17)                                               | 5.77          | (1.05)                                                         | 6.11          | (1.16)                                             | 0.12          | (1.16)                                                     | not available at tin | ne of analysis                                     |               | le at time of<br>lysis                                        |  |
| Systolic blood pressure in mmHg, mean (SD) | 136.5 (1       | (9.0)                                              | 134.4         | 4 (17.5)                                                       | 138.          | 4 (21.3)                                           | 137.9         | 0 (21.1)                                                   | 137.9 (1             | 8.5)                                               | 137.5         | (17.8)                                                        |  |

eTable 4. Comparison of baseline characteristics of individuals used in main analysis versus individuals with repeat measures of alcohol consumption or measures of lifetime alcohol consumption from the contributing data sources.

SD = standard deviation, BMI = body-mass index, HDL-C = high density lipoprotein cholesterol.

| eTable 5. Hazard ratios for cardiovascul   | ar outcomes amongst current drinkers, without and with   |
|--------------------------------------------|----------------------------------------------------------|
| adjustment for usual or baseline levels of | of potential confounders, mediators and proxies thereof. |

|                                                       |                   | HR (95% CI) p         | er 100 grams/week higł                                 | ner usual alcohol consu | mption                                            |
|-------------------------------------------------------|-------------------|-----------------------|--------------------------------------------------------|-------------------------|---------------------------------------------------|
| Level of adjustment                                   | All stroke        | Myocardial infarction | Coronary disease<br>excluding myocardial<br>infarction | Heart failure           | Deaths from other types of cardiovascular disease |
| No. of cohorts / events                               | 50 / 6939         | 54 / 9,183            | 32 / 3,399                                             | 24 / 1,782              | 29 / 521                                          |
| Basic adjustment*                                     | 1.16 (1.10, 1.22) | 0.95 (0.89, 1.00)     | 1.06 (0.97, 1.16)                                      | 1.08 (1.00, 1.16)       | 1.20 (1.10, 1.31)                                 |
| + usual LDL cholesterol                               | 1.17 (1.11, 1.23) | 0.96 (0.92, 1.01)     | 1.07 (0.98, 1.17)                                      | 1.09 (1.00, 1.18)       | 1.21 (1.09, 1.33)                                 |
| No. of cohorts / events                               | 61 / 7,891        | 66 / 10,755           | 39 / 3,885                                             | 32 / 2,090              | 38 / 826                                          |
| Basic adjustment*                                     | 1.16 (1.10, 1.21) | 0.95 (0.91, 1.00)     | 1.07 (1.00, 1.14)                                      | 1.12 (1.01, 1.23)       | 1.15 (1.02, 1.27)                                 |
| + usual total cholesterol                             | 1.15 (1.10, 1.20) | 0.93 (0.90, 0.97)     | 1.06 (0.99, 1.14)                                      | 1.13 (1.03, 1.24)       | 1.15 (1.04, 1.28)                                 |
| No. of cohorts / events                               | 31 / 2,236        | 34 / 3,007            | 22 / 1,236                                             | 16 / 1,099              | 18 / 303                                          |
| Basic adjustment*                                     | 1.14 (1.07, 1.21) | 0.94 (0.89, 1.00)     | 1.12 (0.99, 1.26)                                      | 1.16 (0.99, 1.35)       | 1.20 (1.10, 1.32)                                 |
| + usual fibrinogen                                    | 1.13 (1.08, 1.18) | 0.97 (0.92, 1.03)     | 1.12 (1.01, 1.25)                                      | 1.25 (1.07, 1.46)       | 1.24 (1.10, 1.40)                                 |
| No. of cohorts / events                               | 53 / 2,649        | 59 / 3,241            | 29 / 1,809                                             | 26 / 1,211              | 30 / 453                                          |
| Basic adjustment*                                     | 1.10 (1.05, 1.15) | 0.93 (0.88, 0.97)     | 1.05 (0.98, 1.12)                                      | 1.05 (1.00, 1.11)       | 1.20 (1.10, 1.31)                                 |
| + baseline smoking amount                             | 1.09 (1.04, 1.15) | 0.92 (0.88, 0.97)     | 1.03 (0.95, 1.10)                                      | 1.02 (0.97, 1.08)       | 1.19 (1.09, 1.30)                                 |
| No. of cohorts / events                               | 30 / 8,055        | 32 / 9,238            | 21 / 5,795                                             | 18 / 1,570              | 18 / 420                                          |
| Basic adjustment*                                     | 1.13 (1.09, 1.17) | 0.92 (0.86, 0.99)     | 1.05 (0.93, 1.20)                                      | 1.08 (0.99, 1.17)       | 1.22 (1.07, 1.38)                                 |
| + baseline education level and occupation             | 1.13 (1.09, 1.18) | 0.92 (0.87, 0.99)     | 1.05 (0.92, 1.19)                                      | 1.07 (0.98, 1.17)       | 1.22 (1.07, 1.40)                                 |
| No. of cohorts / events                               | 1 / 4,916         | 1 / 5,291             | 1 / 2,006                                              | -                       | _                                                 |
| Basic adjustment*                                     | 1.17 (1.11, 1.21) | 0.89 (0.85, 0.93)     | 0.98 (0.90, 1.07)                                      |                         |                                                   |
| + baseline physical activity                          | 1.16 (1.11, 1.21) | 0.89 (0.85, 0.93)     | 0.98 (0.90, 1.07)                                      |                         |                                                   |
| No. of cohorts / events                               | 24 / 2,717        | 24 / 3,006            | 24 / 4,427                                             | 24 / 1,071              | 24 / 296                                          |
| Basic adjustment*                                     | 1.13 (1.10, 1.16) | 0.95 (0.91, 0.98)     | 1.01 (0.98, 1.04)                                      | 1.14 (1.08, 1.20)       | 1.16 (1.08, 1.24)                                 |
| + baseline self-reported general heath                | 1.12 (1.09, 1.16) | 0.94 (0.91, 0.98)     | 1.00 (0.97, 1.03)                                      | 1.13 (1.06, 1.19)       | 1.15 (1.07, 1.24)                                 |
|                                                       |                   |                       |                                                        |                         |                                                   |
| No. of cohorts / events                               | 1 / 1,608         | 1 / 1,945             | 1 / 3,370                                              | 1 / 254                 | 1 / 103                                           |
| Basic adjustment*                                     | 1.11 (1.07, 1.15) | 0.94 (0.90, 0.98)     | 1.00 (0.97, 1.04)                                      | 1.07 (0.97, 1.19)       | 1.17 (1.09, 1.26)                                 |
| + baseline red meat consumption <sup>1</sup>          | 1.11 (1.07, 1.15) | 0.93 (0.89, 0.97)     | 1.00 (0.97, 1.03)                                      | 1.05 (0.95, 1.16)       | 1.17 (1.08, 1.27)                                 |
| No. of cohorts / events                               | 57 / 4,114        | 57 / 4,717            | 35 / 2,175                                             | 33 / 1,680              | 37 / 842                                          |
| Basic adjustment*                                     | 1.17 (1.11, 1.23) | 0.92 (0.87, 0.97)     | 1.09 (1.03, 1.15)                                      | 1.13 (1.06, 1.21)       | 1.17 (1.01, 1.37)                                 |
| + baseline anti-hypertensive drug<br>use <sup>2</sup> | 1.17 (1.11, 1.23) | 0.92 (0.87, 0.97)     | 1.08 (1.02, 1.15)                                      | 1.13 (1.06, 1.21)       | 1.17 (1.00, 1.36)                                 |

Analyses restricted to individuals with basic adjustment variables plus the additional variable. Studies with fewer than five events were excluded from the analysis of each outcome. \*Basic adjustment includes age, smoking and history of diabetes, and stratified by sex and EPIC centre. <sup>1</sup>Adjustment includes separate variables for pork, beef and lamb consumption. <sup>2</sup>Adjustment includes systolic blood pressure, anti-hypertinsive drug use and their interaction.

**eTable 6.** Hazard ratios for death from lung cancer and digestive related cancer outcomes per 100 grams/wk higher usual alcohol consumption amongst current drinkers, without and with adjustment for usual or baseline levels of potential confounders, mediators and proxies thereof.

|                                     | Deaths fi                     | rom lung cancer   | Death from                    | Death from digestive related cancer |  |  |  |
|-------------------------------------|-------------------------------|-------------------|-------------------------------|-------------------------------------|--|--|--|
| Level of adjustment                 | No. of<br>cohorts /<br>events | HR (95% CI)       | No. of<br>cohorts /<br>events | HR (95% CI)                         |  |  |  |
| Basic adjustment*                   | 49 / 2,530                    | 1.18 (1.10, 1.27) | 55 / 3,747                    | 1.17 (1.12, 1.24)                   |  |  |  |
| + usual systolic blood pressure     |                               | 1.18 (1.10, 1.26) |                               | 1.17 (1.11, 1.22)                   |  |  |  |
| Basic adjustment*                   | 39 / 1,356                    | 1.17 (1.07, 1.29) | 45 / 1,768                    | 1.19 (1.11, 1.26)                   |  |  |  |
| + usual HDL cholesterol             |                               | 1.20 (1.08, 1.33) |                               | 1.18 (1.12, 1.25)                   |  |  |  |
| Basic adjustment*                   | 49 / 2,490                    | 1.18 (1.10, 1.26) | 53 / 3,686                    | 1.16 (1.10, 1.24)                   |  |  |  |
| + usual body mass index             |                               | 1.18 (1.10, 1.26) |                               | 1.16 (1.10, 1.24)                   |  |  |  |
| Basic adjustment*                   | 45 / 1,561                    | 1.17 (1.08, 1.27) | 49 / 2,056                    | 1.17 (1.10, 1.24)                   |  |  |  |
| + usual total cholesterol           |                               | 1.17 (1.07, 1.27) |                               | 1.17 (1.10, 1.24)                   |  |  |  |
| Basic adjustment*                   | 19 / 1,926                    | 1.13 (1.02, 1.24) | 19 / 1,922                    | 1.17 (1.09, 1.26)                   |  |  |  |
| + baseline education and occupation |                               | 1.11 (1.01, 1.12) |                               | 1.15 (1.08, 1.22)                   |  |  |  |
| Basic adjustment*                   | 24 / 838                      | 1.09 (1.04, 1.15) | 43 / 1,517                    | 1.15 (1.08, 1.22)                   |  |  |  |
| + baseline smoking amount           |                               | 1.04 (0.98, 1.09) | 13 / 1,31/                    | 1.14 (1.07, 1.21)                   |  |  |  |

Analyses restricted to individuals with basic adjustment variables plus the additional variable. Studies with fewer than five events were excluded from the analysis of each outcome. \*Basic adjustment includes age, smoking status and history of diabetes, and stratified by sex and EPIC centre. Digestive cancers were defined as tumours of the liver, colorectum, stomach, pancreas and oesophagus.

**eTable 7:** Sex-specific hazard ratios for major cardiovascular outcomes per 100 grams/week increase in usual alcohol consumption amongst current drinkers.

| Description of sensitivity<br>analyses | Outcome                                              | No. of events | Hazard Ratio (95% CI)<br>per 100 grams/week<br>increase | I <sup>2</sup> (95% CI) |
|----------------------------------------|------------------------------------------------------|---------------|---------------------------------------------------------|-------------------------|
| Restricted to men                      | All stroke                                           | 7,280         | 1.15 (1.10, 1.19)                                       | 17% (0%, 39%)           |
|                                        | Myocardial infarction                                | 11,068        | 0.95 (0.93, 0.98)                                       | 5% (0%, 29%)            |
|                                        | Coronary disease excluding myocardial infarction     | 5,591         | 1.05 (1.00, 1.11)                                       | 23% (0%, 47%)           |
|                                        | Heart failure                                        | 1,663         | 1.10 (1.05, 1.15)                                       | 1% (0%, 39%)            |
|                                        | Deaths from other types of cardiovascular disease    | 795           | 1.17 (1.06, 1.29)                                       | 30% (9%, 53%)           |
| Restricted to women                    | All stroke                                           | 4,704         | 1.09 (1.01, 1.18)                                       | 3% (0%, 29%)            |
|                                        | Myocardial infarction                                | 3,407         | 0.87 (0.75, 1.01)                                       | 28% (0%, 52%)           |
|                                        | Coronary disease excluding myocardial infarction     | 2,349         | 1.07 (0.86, 1.33)                                       | 54% (23%, 72%)          |
|                                        | Heart failure                                        | 1,010         | 0.94 (0.82, 1.08)                                       | 0% (0%, 45%)            |
|                                        | Deaths from other types of<br>cardiovascular disease | 287           | 1.45 (1.10, 1.92)                                       | 19% (0%, 53%)           |

Studies with fewer than five events were excluded from the analysis of each outcome. \*Adjusted for age, smoking and history of diabetes, and stratified by sex and EPIC centre.

**eTable 8:** Sensitivity analyses: Hazard ratios for major cardiovascular outcomes per 100 grams/week increase in usual alcohol consumption amongst current drinkers.

| Description of sensitivity analyses | Outcome                                           | No. of events | Hazard Ratio (95% CI)<br>per 100 grams/week<br>increase | I <sup>2</sup> (95% CI) |
|-------------------------------------|---------------------------------------------------|---------------|---------------------------------------------------------|-------------------------|
| Principal analysis on all           | All stroke                                        | 12,090        | 1.14 (1.10, 1.17)                                       | 12% (0%, 35%)           |
| individuals                         | Myocardial infarction                             | 14,539        | 0.94 (0.91, 0.97)                                       | 12% (0%, 35%)           |
|                                     | Coronary disease excluding MI                     | 7,990         | 1.06 (1.00, 1.11)                                       | 26% (0%, 49%)           |
|                                     | Heart failure                                     | 2,711         | 1.09 (1.03, 1.15)                                       | 4% (0%, 31%)            |
|                                     | Deaths from other types of cardiovascular disease | 1,121         | 1.18 (1.07, 1.30)                                       | 33% (2%, 53%)           |
| Excluding first five years of       | All stroke                                        | 8,005         | 1.14 (1.10, 1.18)                                       | 6% (0%, 32%)            |
| follow-up                           | Myocardial infarction                             | 8,880         | 0.94 (0.91, 0.97)                                       | 0% (0%, 29%)            |
|                                     | Coronary disease excluding MI                     | 3,989         | 1.06 (1.02, 1.10)                                       | 0% (0%, 37%)            |
|                                     | Heart failure                                     | 1,821         | 1.09 (1.04, 1.14)                                       | 0% (0%, 38%)            |
|                                     | Deaths from other types of cardiovascular disease | 808           | 1.17 (1.07, 1.28)                                       | 6% (0%, 36%)            |
| Excluding current smokers           | All stroke                                        | 8,185         | 1.15 (1.12, 1.18)                                       | 0% (0%, 30%)            |
|                                     | Myocardial infarction                             | 8,880         | 0.95 (0.93, 0.98)                                       | 0% (0%, 28%)            |
|                                     | Coronary disease excluding MI                     | 5,994         | 1.07 (0.98, 1.17)                                       | 40% (12%, 59%)          |
|                                     | Heart failure                                     | 1,926         | 1.14 (1.06, 1.23)                                       | 14% (0%, 44%)           |
|                                     | Deaths from other types of cardiovascular disease | 679           | 1.20 (1.09, 1.32)                                       | 6% (0%, 35%)            |
| Excluding people with a             | All stroke                                        | 11,089        | 1.13 (1.10, 1.17)                                       | 8% (0%, 33%)            |
| history of diabetes                 | Myocardial infarction                             | 13,418        | 0.95 (0.91, 0.98)                                       | 25% (0%, 44%)           |
|                                     | Coronary disease excluding MI                     | 7,365         | 1.06 (1.01, 1.11)                                       | 23% (0%, 47%)           |
|                                     | Heart failure                                     | 2,351         | 1.13 (1.05, 1.21)                                       | 15% (0%, 44%)           |
|                                     | Deaths from other types of cardiovascular disease | 1,022         | 1.17 (1.06, 1.30)                                       | 36% (7%, 56%)           |
| Excluding people with a             | All stroke                                        | 6,528         | 1.10 (1.07, 1.12)                                       | 0% (0%, 50%)            |
| history of cancer                   | Myocardial infarction                             | 7,306         | 0.94 (0.90, 0.98)                                       | 11% (0%, 48%)           |
|                                     | Coronary disease excluding MI                     | 4,744         | 1.10 (0.98, 1.24)                                       | 64% (37%, 79%)          |
|                                     | Heart failure                                     | 1,145         | 1.05 (1.01, 1.10)                                       | 0% (0%, 57%)            |
|                                     | Deaths from other types of cardiovascular disease | 379           | 1.21 (1.07, 1.36)                                       | 31% (0%, 64%)           |

Studies with fewer than five events were excluded from the analysis of each outcome. \*Adjusted for age, smoking and history of diabetes, and stratified by sex and EPIC centre. MI: Myocardial infarction.

| Baseline characteristic            | Drinks ≤ 2 | days per week  | Drinks > | >2 days per week |
|------------------------------------|------------|----------------|----------|------------------|
|                                    | n          | Mean (SD) or % | n        | Mean (SD) or %   |
| Age in years                       | 194,346    | 57.0 (8.9)     | 244,903  | 58.0 (8.2)       |
| Sex                                | 194,346    |                | 244,903  |                  |
| Male                               | 89,157     | 45.9%          | 143,471  | 58.6%            |
| Female                             | 105,189    | 54.1%          | 101,432  | 41.4%            |
| Ethnicity                          | 161,710    |                | 207,898  |                  |
| White                              | 152,516    | 94.3%          | 201,651  | 97.0%            |
| Non-white                          | 9,194      | 5.7%           | 6,247    | 3.0%             |
| Smoking status                     | 194,346    |                | 244,903  |                  |
| Not current                        | 164,285    | 84.5%          | 204,092  | 83.3%            |
| Current                            | 30,061     | 15.5%          | 40,811   | 16.7%            |
| Level of education                 | 184,511    |                | 223,938  |                  |
| No schooling/Primary               | 4,789      | 2.6%           | 4,355    | 1.9%             |
| Secondary                          | 81,783     | 44.3%          | 79,879   | 35.7%            |
| Vocational/University              | 97,939     | 53.1%          | 139,704  | 62.4%            |
| Occupation                         | 163,956    |                | 214,731  |                  |
| Not working                        | 58,453     | 35.7%          | 80,291   | 37.4%            |
| Manual                             | 20,372     | 12.4%          | 22,457   | 10.5%            |
| Office                             | 71,846     | 43.8%          | 97,588   | 45.5%            |
| Other                              | 13,285     | 8.1%           | 14,395   | 6.7%             |
| History of diabetes                | 194,346    |                | 244,903  |                  |
| No history                         | 186,451    | 95.9%          | 237,473  | 97.0%            |
| Definite diabetic                  | 7,895      | 4.1%           | 7,430    | 3.0%             |
| Usual total household income       | 118,863    |                | 164,772  |                  |
| before tax                         | ,          |                | ,        |                  |
| Less than £18,000                  | 25,335     | 21.3%          | 23,749   | 14.4%            |
| £18,000 to £30,999                 | 30,965     | 26.0%          | 38,241   | 23.2%            |
| £31,000 to £51,999                 | 32,899     | 27.7%          | 46,141   | 28.0%            |
| £52,000 to £100,000                | 24,416     | 20.5%          | 42,983   | 26.1%            |
| Greater than £100,000              | 5,248      | 4.4%           | 13,658   | 8.3%             |
| Townsend deprivation index         | 139,416    | -1.36 (3.0)    | 186,555  | -1.71 (2.8)      |
| Systolic blood pressure (mmHg)     | 192,672    | 135.5 (18.6)   | 243,256  | 138.0 (18.6)     |
| HDL-C (mmol/l)                     | 45,830     | 1.33 (0.37)    | 46,369   | 1.42 (0.39)      |
| BMI (kg/m <sup>2</sup> )           | 190,908    | 26.4 (4.6)     | 242,299  | 26.2 (4.0)       |
| Total cholesterol (mmol/l)         | 50,430     | 5.80 (1.11)    | 51,966   | 5.88 (1.12)      |
| Fibrinogen (µmol/l)                | 13,162     | 9.14 (2.10)    | 18,627   | 8.80 (2.23)      |
| Smoking amount                     | 85,184     | 14.3 (6.3)     | 85,179   | 20.2 (8.5)       |
| Self-reported general health (0-1) | 170,928    | 0.64 (0.23)    | 204,404  | 0.67 (0.22)      |
| Alcohol consumption (g/wk)         | 194,346    | 49.1 (59.4)    | 244,903  | 181.1 (156.6)    |
| Wine consumption (g/wk)            | 157,209    | 23.8 (33.0)    | 202,332  | 104.4 (95.9)     |
| Beer consumption (g/wk)            | 157,032    | 26.3 (54.1)    | 202,777  | 94.2 (135.9)     |
| Spirits consumption (g/wk)         | 154,814    | 16.8 (25.6)    | 201,022  | 52.4 (56.2)      |

eTable 9: Baseline characteristics by frequency of baseline alcohol consumption

SD = standard deviation, BMI = body mass index, HDL-C = high density lipoprotein cholesterol.

| Baseline characteristic            | Predominantly wine<br>drinkers |                | Predominantly beer<br>drinkers |                | Predominantly spirit<br>drinkers |                |
|------------------------------------|--------------------------------|----------------|--------------------------------|----------------|----------------------------------|----------------|
|                                    | n                              | Mean (SD) or % | n                              | Mean (SD) or % | n                                | Mean (SD) or % |
| Age in years                       | 203,900                        | 58.0 (8.1)     | 106,464                        | 56.0 (8.3)     | 120,069                          | 57.0 (8.2)     |
| Sex                                | 203,900                        |                | 106,464                        |                | 120,069                          |                |
| Male                               | 78,360                         | 38.4%          | 86,039                         | 80.8%          | 55,924                           | 46.6%          |
| Female                             | 125,540                        | 61.6%          | 20,425                         | 19.2%          | 64,145                           | 53.4%          |
| Ethnicity                          | 189,411                        |                | 92,549                         |                | 102,642                          |                |
| White                              | 183,828                        | 97.1%          | 89,832                         | 97.1%          | 98,383                           | 95.9%          |
| Non-white                          | 5,583                          | 3.0%           | 2,717                          | 2.9%           | 4,259                            | 4.1%           |
| Smoking status                     | 203,900                        |                | 106,464                        |                | 120,069                          |                |
| Not current                        | 180,169                        | 88.4%          | 85,087                         | 79.9%          | 94,955                           | 79.1%          |
| Current                            | 23,731                         | 11.6%          | 21,377                         | 20.1%          | 25,114                           | 20.9%          |
| Level of education                 | 195,833                        |                | 100,048                        |                | 112,894                          |                |
| No schooling/Primary               | 15,820                         | 8.1%           | 5,749                          | 5.8%           | 10,483                           | 9.3%           |
| Secondary                          | 59,631                         | 30.5%          | 40,335                         | 40.3%          | 45,623                           | 40.4%          |
| Vocational/University              | 120,382                        | 61.5%          | 53,964                         | 53.9%          | 56,788                           | 50.3%          |
| Occupation                         | 182,414                        |                | 96,134                         |                | 102,561                          |                |
| Not working                        | 69,651                         | 38.2%          | 30,092                         | 31.3%          | 41,597                           | 40.6%          |
| Manual                             | 9,440                          | 5.2%           | 17,132                         | 17.8%          | 9,687                            | 9.5%           |
| Office                             | 84,116                         | 46.1%          | 38,525                         | 40.1%          | 39,127                           | 38.2%          |
| Other                              | 19,207                         | 10.5%          | 10,385                         | 10.8%          | 12,150                           | 11.9%          |
| History of diabetes                | 203,900                        |                | 106,464                        |                | 120,069                          |                |
| No history                         | 197,875                        | 97.0%          | 102,097                        | 95.9%          | 115,272                          | 96.0%          |
| Definite diabetic                  | 6,025                          | 3.0%           | 4,367                          | 4.1%           | 4,797                            | 4.0%           |
| Usual total household income       | 141,379                        |                | 71,216                         |                | 69,144                           |                |
| before tax                         |                                |                |                                |                |                                  |                |
| Less than £18,000                  | 19,309                         | 13.7%          | 14,677                         | 20.6%          | 14,392                           | 20.8%          |
| £18,000 to £30,999                 | 32,276                         | 22.8%          | 17,912                         | 25.2%          | 18,451                           | 26.7%          |
| £31,000 to £51,999                 | 39,569                         | 28.0%          | 20,330                         | 28.6%          | 18,735                           | 27.1%          |
| £52,000 to £100,000                | 37,990                         | 26.9%          | 15,431                         | 21.7%          | 13,803                           | 20.0%          |
| Greater than £100,000              | 12,235                         | 8.7%           | 2,866                          | 4.0%           | 3,763                            | 5.4%           |
| Townsend deprivation index         | 161,484                        | -1.83 (2.75)   | 80,645                         | -1.23 (3.06)   | 81,049                           | -1.42 (3.00)   |
| Systolic blood pressure (mmHg)     | 201,083                        | 133.5 (18.9)   | 105,227                        | 134.4 (17.9)   | 118,057                          | 135.6 (18.8)   |
| HDL-C (mmol/l)                     | 36,838                         | 1.41 (0.39)    | 20,238                         | 1.32 (0.36)    | 32,713                           | 1.38 (0.39)    |
| BMI (kg/m <sup>2</sup> )           | 200,656                        | 26.3 (4.2)     | 105,454                        | 26.1 (4.2)     | 117,864                          | 26.4 (4.4)     |
| Total cholesterol (mmol/l)         | 40,035                         | 5.70 (1.16)    | 23,720                         | 5.62 (1.13)    | 36,126                           | 5.79 (1.15)    |
| Fibrinogen (µmol/l)                | 4,314                          | 9.35 (1.94)    | 4,664                          | 9.61 (2.11)    | 7,298                            | 9.48 (1.94)    |
| Smoking amount                     | 90,512                         | 11.4 (7.8)     | 39,733                         | 17.9 (8.4)     | 46,883                           | 18.3 (11.3)    |
| Self-reported general health (0-1) | 165,686                        | 0.63 (0.23)    | 84,686                         | 0.62 (0.23)    | 86,272                           | 0.64 (0.23)    |
| Alcohol consumption (g/wk)         | 203,900                        | 138 (132)      | 106,464                        | 153 (171)      | 120,069                          | 191 (161)      |

eTable 10: Baseline characteristics by type of baseline alcohol predominantly consumed\*

SD = standard deviation, BMI = body mass index, HDL-C = high density lipoprotein cholesterol. \* Type of alcohol predominantly consumed was determined from the maximum baseline consumption grams/week for each alcohol type.

#### eFigure 1: Flow diagram of study selection process in current analysis



eFigure 2: Box plots of baseline alcohol consumption amongst 599,912 current drinkers from 83 studies by decade of first baseline survey.



22





Response means are adjusted to age 50 year and plotted at deciles of baseline alcohol consumption. Red squares and solid lines represent associatons for females; blue squares and dashed lines represent associatons for males. The r values represent the age and sex adjusted partial correlation coefficient between continuous baseline characteristics and alcohol consumption in males and females combined. The Y-axis is labelled at the mean and +/- two standard deviations of the baseline characteristic of interest. BMI: Body-mass index, SBP: systolic blood pressure, HDL-C: high density lipoprotein cholesterol. Vertical lines represent 95% CIs.

eFigure 3b: Cross-sectional associations between baseline consumption and categorical baseline characteristics.



Response means are adjusted to age 50 years. Red squares represent associatons for females; blue squares represent associatons for males. Vertical lines represent 95% CIs.





Adjusted for age, smoking and history of diabetes, and stratified by sex and EPIC centre. Studies with fewer than five events of any outcome were excluded from the analysis of that outcome. The sizes of the boxes are proportional to the inverse of the variance of the log-transformed hazard ratios. The reference category is the lowest alcohol consumption category (baseline consumption >0 and  $\leq 25g$ /week). HRs are plotted against the mean baseline alcohol consumption in each category. Vertical lines represent 95% CIs. The best-fitting fractional polynomial Cox models on the log scale were: all-cause mortality, non-linear (ie, powers 0.5 and 1); and cardiovascular disease, non-linear (ie, powers 0 and 0).



**eFigure 5.** Shape of association of usual alcohol consumption with all-cause mortality for females and males.

Adjusted for age, smoking and history of diabetes, and stratified by sex and EPIC centre. The reference category is the lowest alcohol consumption category (baseline consumption >0 and  $\leq$ 25g/week). HRs are plotted against the mean usual alcohol consumption in each category. The sizes of the boxes are proportional to the inverse of the variance of the log-transformed hazard ratios. Vertical lines represent 95% CIs.

eFigure 6. Shape of association of usual alcohol consumption with all-cause mortality by age-specific groups.



Adjusted for age, smoking and history of diabetes, and stratified by sex and EPIC centre. Baseline alcohol consumption categories amongst current drinkers were  $>0-\le50$  grams/week,  $>50-\le100$  grams/week,  $>100-\le150$  grams/week,  $>150-\le250$  grams/week,  $>250-\le350$  grams/week and >350 grams/week. The reference category is the lowest baseline alcohol consumption category (>0 and  $\le50g$ /week). HRs are plotted against the mean usual alcohol consumption in each category. The sizes of the boxes are proportional to the inverse of the variance of the log-transformed hazard ratios. Vertical lines represent 95% CIs.



eFigure 7. Shapes of associations of usual alcohol consumption with fatal and non-fatal major cardiovascular causes.



Adjusted for age, smoking and history of diabetes, and stratified by sex and EPIC centre. Alcohol consumption categories amongst current drinkers were  $>0-\le50$  grams/week,  $>50-\le100$  grams/week,  $>100-\le150$  grams/week,  $>150-\le250$  grams/week,  $>250-\le350$  grams/week and >350 grams/week. The reference category is the lowest baseline alcohol consumption category (>0 and  $\le50g$ /week). HRs are plotted against the mean usual alcohol consumption in each category. Studies with fewer than five events of any outcome were excluded from the analysis of that outcome. The sizes of the boxes are proportional to the inverse of the variance of the log-transformed hazard ratios. Vertical lines represent 95% CIs.



eFigure 8. Shapes of associations of usual alcohol consumption with type of stroke.

Adjusted for age, smoking and history of diabetes, and stratified by sex and EPIC centre. Baseline alcohol consumption categories amongst current drinkers were >0- $\leq$ 50 grams/week, >50- $\leq$ 100 grams/week, >100- $\leq$ 150 grams/week, >150- $\leq$ 250 grams/week, >250- $\leq$ 350 grams/week and >350 grams/week. The reference category is the lowest baseline alcohol consumption category (>0 and  $\leq$ 50g/week). HRs are plotted against the mean usual alcohol consumption in each category. Studies with fewer than five events of any outcome were excluded from the analysis of that outcome. The sizes of the boxes are proportional to the inverse of the variance of the log-transformed hazard ratios. Vertical lines represent 95% CIs.

**eFigure 9a:** Hazard ratios per 100 grams/week higher usual alcohol consumption for subtypes of cardiovascular outcomes amongst current drinkers, additionally adjusted for body-mass index.

| Dutcome                                          | Number of events | HR (95% CI)         | Heterogeneity I <sup>2</sup><br>(95% CI) |
|--------------------------------------------------|------------------|---------------------|------------------------------------------|
| All stroke                                       | 6249             | 1.16 (1.11, 1.21)   | 20% (0%, 42%)                            |
| Non-fatal stroke                                 | 4717             | - 1.17 (1.11, 1.23) | 23% (0%, 47%)                            |
| Fatal stroke                                     | 1504             |                     | 0% (0%, 35%)                             |
| Ischaemic stroke                                 | 2775             | 1.17 (1.10, 1.24)   | 19% (0%, 46%)                            |
| Haemorrhagic stroke                              | 769              | 1.16 (1.09, 1.23)   | 0% (0%, 38%)                             |
| Subarachnoid haemorrhage                         | 308              | 1.11 (1.01, 1.23)   | 0% (0%, 60%)                             |
| Unclassified stroke                              | 1977             | 1.16 (1.09, 1.24)   | 9% (0%, 36%)                             |
| All myocardial infarction                        | 8324             | 0.94 (0.91, 0.98)   | 16% (0%, 38%)                            |
| Non-fatal myocardial infarction                  | 6534 -           | 0.94 (0.90, 0.99)   | 24% (0%, 46%)                            |
| Fatal myocardial infarction                      | 2654 -           | 0.96 (0.91, 1.00)   | 0% (0%, 34%)                             |
| Coronary disease excluding MI                    | 5722             |                     | 33% (1%, 54%)                            |
| Non-fatal coronary disease excluding MI          | 4173 -           | 1.02 (0.94, 1.10)   | 27% (0%, 65%)                            |
| Fatal coronary disease excluding MI              | 1458             | 1.12 (1.04, 1.20)   | 17% (0%, 45%)                            |
| Heart failure (fatal and non-fatal)              | 2566             |                     | 9% (0%, 38%)                             |
| Death from other types of cardiovascular disease | 1035             | 1.16 (1.06, 1.27)   | 20% (0%, 46%)                            |
| Cardiac dysrhythmia                              | 203              | • 1.14 (0.79, 1.64) | 53% (12%, 75%)                           |
| Hypertensive disease                             | 173              | 1.23 (1.14, 1.33)   | 0% (0%, 55%)                             |
| Sudden cardiac death                             | 272 -            | 1.16 (0.96, 1.41)   | 16% (0%, 54%)                            |
| Aortic aneurysm                                  | 280              | 1.16 (1.05, 1.28)   | 0% (0%, 49%)                             |

HR (95% CI) per 100 grams/week higher usual alcohol consumption

**eFigure 9b.** Shape of association of usual alcohol consumption with all-cause mortality and all cardiovascular disease amongst current drinkers, additionally adjusted for body-mass index.



Adjusted for BMI, age, smoking and history of diabetes, and stratified by sex and EPIC centre. Alcohol consumption categories amongst current drinkers were >0- $\leq$ 50 grams/week, >50- $\leq$ 100 grams/week, >100- $\leq$ 150 grams/week, >150- $\leq$ 250 grams/week, >250- $\leq$ 350 grams/week and >350 grams/week. The reference category is the lowest baseline alcohol consumption category (>0 and  $\leq$ 50g/week). HRs are plotted against the mean usual alcohol consumption in each category. Studies with fewer than five events of any outcome were excluded from the analysis of that outcome. The sizes of the boxes are proportional to the inverse of the variance of the log-transformed hazard ratios. Vertical lines represent 95% CIs.

eFigure 10: Shape of association between baseline alcohol consumption, including ex- and non-drinkers, with all cardiovascular disease and all-cause mortality.



Adjusted for age, smoking and history of diabetes, and stratified by sex and EPIC centre. Alcohol consumption categories amongst current drinkers were  $>0-\le50$  grams/week,  $>50-\le100$  grams/week,  $>100-\le150$  grams/week,  $>150-\le250$  grams/week,  $>250-\le350$  grams/week and >350 grams/week. The reference category is the lowest baseline alcohol consumption category (>0 and  $\le50g$ /week). Studies with fewer than five events of any outcome were excluded from the analysis of that outcome. The sizes of the boxes are proportional to the inverse of the variance of the log-transformed hazard ratios. Vertical lines represent 95% CIs. Individuals for whom we were unable to distinguish as ex- or never- drinkers were excluded from the analysis.

Baseline alcohol consumption complete-case analysis (n=599,912) Multiple imputation analysis (n=706,924) Hazard ratio Heterogeneity I<sup>2</sup> Heterogeneity I<sup>2</sup> Hazard ratio Number of events Outcome Number of events (95% CI) (95% CI) (95% CI) (95% CI) All stroke 12090 1.08 (1.07, 1.09) 0% (0%, 28%) 13237 1.08 (1.06, 1.09) 0% (0%, 28%) Non-fatal stroke 9910 1.09 (1.07, 1.10) 0% (0%, 33%) 10625 1.08 (1.06, 1.10) 0% (0%, 36%) Fatal stroke 2142 -1.07 (1.03, 1.10) 0% (0%, 35%) 2414 -1.07 (1.04, 1.09) 0% (0%, 32%) Ischaemic stroke 6256 1.09 (1.07, 1.11) 0% (0%, 36%) 6679 1.09 (1.07, 1.11) 0% (0%, 35%) 1482 -1.12 (1.09, 1.16) 0% (0%, 37%) 1601 -Haemorrhagic stroke 1.12 (1.08, 1.15) 0% (0%, 36%) Subarachnoid haemorrhage 663 1.06 (1.00, 1.14) 4% (0%, 60%) 732 1.06 (1.00, 1.13) 0% (0%, 58%) Unclassified stroke ٠ 1.07 (1.04, 1.09) 0% (0%, 33%) -3215 3423 1.06 (1.03, 1.09) 5% (0%, 32%) All myocardial infarction 14539 0.97 (0.96, 0.99) 2% (0%, 24%) 15722 0.97 (0.96, 0.99) 0% (0%, 28%)

eFigure 11: Hazard ratios per 100 grams/week higher baseline alcohol consumption for subtypes of cardiovascular outcomes amongst current drinkers with recorded baseline alcohol consumption (left) compared against all current drinkers using multiple imputation (right).

HR (95% CI) per 100 grams/week higher baseline alcohol consumption

Missing alcohol consumption (log transformed) for known current drinkers was imputed using standard multiple imputation methods separately within each study, using known predictors for age, gender, smoking status, history of diabetes, indicators for all CVD disease categories listed in table above and their corresponding Nelson-Aalen estimators, weighted appropriately for the sampling fraction in EPIC-CVD (see White, I. R., Royston, P. and Wood, A. M. (2011), Multiple imputation using chained equations: Issues and guidance for practice. Statist. Med., 30: 377–399. doi:10.1002/sim.4067). Twenty imputed datasets were created for each study. The analysis was then performed separately by study, pooling imputation-specific estimates using Rubin's rules. This was followed by a random-effects meta-analysis.





eFigure 12: Shapes of associations of baseline alcohol consumption with stroke and coronary outcomes amongst alcohol drinkers

Adjusted for age, smoking and history of diabetes, and stratified by sex and EPIC centre. The reference category is the lowest baseline alcohol consumption category (>0 and  $\leq 25g$ /week). HRs are plotted against the mean baseline alcohol consumption in each category. Studies with fewer than five events of any outcome were excluded from the analysis of that outcome. The sizes of the boxes are proportional to the inverse of the variance of the log-transformed hazard ratios. Vertical lines represent 95% CIs. The best-fitting fractional polynomial Cox models on the log scale were: all stroke, linear (ie, powers 1); myocardial infarction, log-linear (powers 0); coronary disease excluding myocardial infarction, linear (ie, powers 1); and deaths from other types of cardiovascular disease, linear (ie, powers 1).

**eFigure 13:** Best fitting second degree fractional polynomial for the modelled shape of association between baseline alcohol consumption with all-cause mortality.



To estimate the alcohol consumption level at which mortality risk was lowest, we conducted nonlinear modelling by fitting a Cox regression model stratified by cohort, sex and trial arm (where applicable), to determine a best fitting second degree fractional polynomial model (FP2) for baseline alcohol consumption.

**eFigure 14:** Hazard ratios per 100 grams/week higher usual alcohol consumption for subtypes of cardiovascular outcomes amongst current drinkers from a fixed-effect meta-analysis.

| Outcome                                          | Number of events | Hazard ratio (95%            |
|--------------------------------------------------|------------------|------------------------------|
| All stroke                                       | 12090            | ■ 1.12 (1.09, 1.14)          |
| Non-fatal stroke                                 | 9910             | <b>1.12 (1.09, 1.14)</b>     |
| Fatal stroke                                     | 2142             | <b>—</b> 1.13 (1.07, 1.19)   |
| Ischaemic stroke                                 | 6256             | <b>1</b> .12 (1.09, 1.15)    |
| Haemorrhagic stroke                              | 1482             | <b>--</b> 1.17 (1.12, 1.23)  |
| Subarachnoid haemorrhage                         | 663              | <b>1.09 (1.00, 1.19)</b>     |
| Unclassified stroke                              | 3215             | <b>--1.10 (1.06, 1.15)</b>   |
| All myocardial infarction                        | 14539            | 0.94 (0.92, 0.96)            |
| Non-fatal myocardial infarction                  | 11706            | 0.93 (0.91, 0.95)            |
| Fatal myocardial infarction                      | 2748             | 1.01 (0.96, 1.06)            |
| Coronary disease non-MI                          | 7990             | • 1.02 (0.99, 1.05)          |
| Non-fatal coronary disease non-MI                | 6000             | 1.00 (0.97, 1.03)            |
| Fatal coronary disease non-MI                    | 1889             | <b>---</b> 1.10 (1.05, 1.16) |
| Heart failure (fatal and non-fatal)              | 2711             |                              |
| Death from other types of cardiovascular disease | 1121             | <b></b> 1.19 (1.13, 1.25)    |
| Cardiac dysrhythmia                              | 261              | ◆ 1.12 (0.95, 1.32)          |
| Hypertensive disease                             | 178              | <b>——</b> 1.24 (1.15, 1.33)  |
| Sudden cardiac death                             | 283              | 1.15 (0.97, 1.35)            |
| Aortic aneurysm                                  | 289              | <b>— 1</b> .15 (1.03, 1.28)  |

HR (95% CI) per 100 gram/week increase in usual alcohol consumption

Adjusted for age, smoking and history of diabetes.

Studies of the same design (ie, prospective, case-cohort and nested case-control studies) were analysed together in a single model, stratified by cohort, sex and EPIC centre. Results from each study design were then combined in a fixed-effect meta-analysis. Studies with fewer than five events of any outcome were excluded from the analysis of that outcome.

**eFigure 15:** Hazard ratios per 100 grams/week higher usual alcohol consumption for subtypes of cardiovascular outcomes amongst current drinkers, from fixed-effect analysis with inclusion of studies with fewer than 5 outcomes of a particular type.

| Outcome                                          | No. of events | HR (95% CI)              |
|--------------------------------------------------|---------------|--------------------------|
| All stroke                                       | 12098         | 1.12 (1.09, 1.14)        |
| Non-fatal stroke                                 | 9920          | 1.12 (1.09, 1.14)        |
| Fatal stroke                                     | 2178 -        | 1.12 (1.06, 1.19)        |
| Ischaemic stroke                                 | 6289          | 1.12 (1.09, 1.15)        |
| Haemorrhagic stroke                              | 1523          | 1.17 (1.12, 1.23)        |
| Subarachnoid haemorrhage                         | 711           | ■ 1.10 (1.01, 1.20)      |
| Unclassified stroke                              | 3263 -        | 1.11 (1.06, 1.16)        |
| All myocardial infarction                        | 14545         | 0.94 (0.92, 0.96)        |
| Non-fatal myocardial infarction                  | 11709 -       | 0.93 (0.91, 0.95)        |
| Fatal myocardial infarction                      | 2776 -        | 1.01 (0.96, 1.06)        |
| Other coronary disease (non-MI)                  | 8039          | 1.02 (1.00, 1.05)        |
| Other non-fatal coronary disease (non-MI)        | 6012          | 1.00 (0.97, 1.03)        |
| Other fatal coronary disease (non-MI)            | 1942 -        | <b>1.11 (1.05, 1.16)</b> |
| Heart failure                                    | 2748 -        | L 1.07 (1.03, 1.12)      |
| Death from other types of cardiovascular disease | 1150          | 1.18 (1.12, 1.24)        |
| Cardiac dysrhythmia                              | 304           | 1.14 (0.98, 1.33)        |
| Hypertensive disease                             | 219           | 1.25 (1.17, 1.35)        |
| Sudden cardiac death                             | 292           | • 1.18 (1.00, 1.39)      |
| Aortic aneurysm                                  | 345 —         | <b>1.16 (1.04, 1.29)</b> |

RR (95% CI) per 100 gram/week higher usual alcohol consumption

Adjusted for age, smoking and history of diabetes.

Studies of the same design (ie, prospective, case-cohort and nested case-control studies) were analysed together in a single model, stratified by cohort, sex and EPIC centre. Results from each study design were then combined in a fixed-effect meta-analysis. This analysis included all studies.



**eFigure 16:** Shapes of associations of usual alcohol consumption with stroke and coronary outcomes amongst current alcohol drinkers restricted to studies recording both fatal and non-fatal endpoints.

Analysis restricted to studies recording fatal and non-fatal cardiovascular diseases. Adjusted for age, smoking and history of diabetes, and stratified by sex and EPIC centre. Alcohol consumption categories amongst current drinkers were  $>0-\le50$  grams/week,  $>50-\le100$  grams/week,  $>100-\le150$  grams/week,  $>150-\le250$  grams/week,  $>250-\le350$  grams/week and >350 grams/week. The reference category is the lowest baseline alcohol consumption category (>0 and  $\le50g$ /week). HRs are plotted against the mean usual alcohol consumption in each category. Studies with fewer than five events of any outcome were excluded from the analysis of that outcome. The sizes of the boxes are proportional to the inverse of the variance of the log-transformed hazard ratios. Vertical lines represent 95% CIs.



eFigure 17: Shapes of associations of baseline alcohol consumption with all-cause mortality by (a) consumption frequency, (b) consumption type\* and (c) binge drinking status.

Adjusted for age, smoking and history of diabetes, and stratified by sex and EPIC centre.

\*Analysis was performed separately for each alcohol consumption type (351,342 wine drinkers; 227,469 beer drinkers; 171,770 spirits drinkers). Individuals drinking more than one type of alcohol were included in each separate analysis.

**eFigure 18.** Hazard ratios per 100 grams/week higher baseline alcohol consumption for major cardiovascular outcomes amongst current drinkers and by alcohol type.

| Outcome                       | Type of<br>Alcohol<br>consumption | No. of<br>events | Hazard ratio<br>(95% Cl) | P-value <sup>1</sup> P-value <sup>2</sup> | Heterogeneity I <sup>2</sup><br>(95% CI) |
|-------------------------------|-----------------------------------|------------------|--------------------------|-------------------------------------------|------------------------------------------|
| All stroke                    | All alcohol                       | 8,269            | 1.08 (1.06, 1.09)        |                                           | 0% (0%, 41%)                             |
|                               | Wine                              | -#               | 1.01 (0.95, 1.07)        |                                           | 20% (0%, 49%)                            |
|                               | Beer                              |                  | 1.11 (1.06, 1.16)        | 0.12                                      | 15% (0%, 46%)                            |
|                               | Spirits                           |                  | 1.22 (1.18, 1.26)        | 0.012 0.63                                | 0% (0%, 41%)                             |
| All myocardial infarction     | All alcohol                       | 10,038           | 0.97 (0.96, 0.99)        |                                           | 0% (0%, 40%)                             |
|                               | Wine                              |                  | 0.93 (0.88, 0.98)        |                                           | 25% (0%, 52%)                            |
|                               | Beer                              | #                | 0.99 (0.97, 1.02)        | 0.15                                      | 0% (0%, 40%)                             |
|                               | Spirits                           | -                | 1.12 (1.07, 1.17)        | <0.001 0.26                               | 3% (0%, 31%)                             |
| Coronary disease excluding MI | All alcohol                       | 5,791            | 1.00 (0.99, 1.02)        |                                           | 0% (0%, 48%)                             |
|                               | Wine                              |                  | 0.97 (0.92, 1.03)        |                                           | 16% (0%, 51%)                            |
|                               | Beer                              |                  | 1.02 (0.99, 1.04)        | 0.54                                      | 0% (0%, 48%)                             |
|                               | Spirits                           | -                | 1.15 (1.10, 1.20)        | 0.04 0.27                                 | 0% (0%, 48%)                             |
| Heart failure                 | All alcohol                       | 1,241            | 1.09 (1.06, 1.13)        |                                           | 0% (0%, 51%)                             |
|                               | Wine                              |                  | 0.98 (0.85, 1.13)        |                                           | 34% (0%, 63%)                            |
|                               | Beer                              | <b>⊣</b>         | 1.13 (1.08, 1.18)        | 0.02                                      | 0% (0%, 51%)                             |
|                               | Spirits                           |                  | 1.16 (1.07, 1.25)        | 0.16 0.07                                 | 21% (0%, 56%)                            |
|                               |                                   |                  |                          |                                           |                                          |
|                               |                                   | .95 1 1.05 1.1   | 1 1                      |                                           |                                          |

HR (95% CI) per 100 gram/week higher baseline alcohol consumption

Analyses were restricted to 430,433 individuals with known alcohol type (351,342 wine drinkers; 227,469 beer drinkers; 171,770 spirits drinkers). MI: Myocardial infarction.

Adjusted for age, smoking and history of diabetes, and stratified by sex and EPIC centre. Indicator variables for consumption-type were also included in the models.

Studies with fewer than five events of any outcome were excluded from the analysis of that outcome.

P-value<sup>1</sup> for difference in hazard ratios for beer versus wine and spirits versus wine. Comparisons were restricted to beer and wine drinkers and spirits and wine drinkers respectively.

P-value<sup>2</sup> for difference in hazard ratios for beer versus spirits. Comparison was restricted to beer and spirits drinkers.

**eFigure 19a-e:** Hazard ratios per 100 gram/week increase in usual alcohol consumption for major vascular outcomes amongst current drinkers by study/cohort-level characteristics.

### a. Stroke

|                                 |      | No. of<br>participants | No. of<br>events |              | HR (95% CI)     | P-value for<br>interaction |
|---------------------------------|------|------------------------|------------------|--------------|-----------------|----------------------------|
|                                 |      |                        |                  |              |                 | Interaction                |
| Geographical region             |      |                        |                  |              |                 |                            |
| Western Europe                  | 44   | 522259                 | 9922             | _ <b>_</b>   | 1.15 (1.10, 1.2 | 20) 0.652                  |
| North America                   | 18   | 34844                  | 1306             | <b>_</b>     | 1.11 (1.03, 1.1 | 19)                        |
| Other                           | 10   | 27816                  | 791              | <b>-</b>     | 1.15 (1.03, 1.2 | 29)                        |
| Year of baseline survey         |      |                        |                  |              |                 |                            |
| 1970-1979                       | 8    | 30222                  | 449              | <b>_</b>     | 1.15 (1.04, 1.2 | 2 <b>9)</b> 0.951          |
| 1980-1989                       | 28   | 95301                  | 2132             | <b>_</b>     | 1.13 (1.06, 1.2 | 21)                        |
| 1990-1999                       | 28   | 100714                 | 7605             | <b>_</b>     | 1.16 (1.08, 1.2 | 25)                        |
| 2000+                           | 7    | 357243                 | 1823             | <b>-</b>     | 1.14 (1.02, 1.2 | 28)                        |
| Data set                        |      |                        |                  |              |                 |                            |
| ERFC                            | 70   | 232511                 | 4896             | <b></b>      | 1.16 (1.11, 1.2 | 21) 0.641                  |
| EPIC-CVD                        | 1    | 26036                  | 5507 —           |              | 1.10 (0.97, 1.2 | 24)                        |
| UKBiobank                       | 1    | 326372                 | 1616 -           | <b></b>      | 1.11 (0.99, 1.2 | 26)                        |
| Ascertainment approach          |      |                        |                  |              |                 |                            |
| Questionnaire: interview        | 13   | 32021                  | 1214             | <b>_</b>     | 1.15 (1.06, 1.2 | 24) 0.310                  |
| Questionnaire: self-administere | ed22 | 422237                 | 3242             | _ <b></b>    | 1.13 (1.10, 1.1 | 17)                        |
| FFQ                             | 15   | 56396                  | 6120             | _ <b></b>    | 1.10 (1.06, 1.1 | 14)                        |
| Dietary Recall/Survey           | 8    | 32282                  | 565              | <b>-</b>     | 1.07 (1.01, 1.1 | 14)                        |
|                                 |      |                        |                  |              |                 |                            |
|                                 |      |                        | l<br>.8          | 1 1.2 1.4 1/ |                 |                            |

Hazard ratio (95% CI) per 100 gram/week higher usual alcohol consumption

### b. Myocardial infarction

|                                  | No. of<br>studies | No. of<br>participants | No. of<br>events |         |           |     |     | HR (95% CI) P-value     |
|----------------------------------|-------------------|------------------------|------------------|---------|-----------|-----|-----|-------------------------|
|                                  |                   |                        |                  |         | 1         |     |     | interacti               |
| Geographical region              |                   |                        |                  |         |           |     |     |                         |
| Western Europe                   | 49                | 531997                 | 11935            |         |           |     |     | 0.95 (0.91, 0.98) 0.854 |
| North America                    | 17                | 34466                  | 1905             |         | +         |     |     | 0.94 (0.88, 1.00)       |
| Other                            | 9                 | 27602                  | 679 🗲            | -       | +-        |     |     | 0.91 (0.79, 1.05)       |
| ear of baseline survey           |                   |                        |                  |         |           |     |     |                         |
| 1970-1979                        | 9                 | 30378                  | 1279             |         | +-        |     |     | 0.96 (0.89, 1.04) 0.543 |
| 1980-1989                        | 30                | 100266                 | 2985             |         | +         |     |     | 0.95 (0.90, 1.01)       |
| 1990-1999                        | 27                | 103605                 | 8092 -           |         |           |     |     | 0.90 (0.84, 0.97)       |
| 2000+                            | 8                 | 358377                 | 2124             |         | +         |     |     | 0.96 (0.86, 1.07)       |
| Data set                         |                   |                        |                  |         |           |     |     |                         |
| ERFC                             | 73                | 241657                 | 6647             |         |           |     |     | 0.94 (0.91, 0.98) 0.954 |
| EPIC-CVD                         | 1                 | 26036                  | 5919 —           |         | +-        |     |     | 0.92 (0.82, 1.04)       |
| JKBiobank                        | 1                 | 326372                 | 1953 -           |         | +         |     |     | 0.94 (0.83, 1.06)       |
| Ascertainment approach           |                   |                        |                  |         |           |     |     |                         |
| Questionnaire: interview         | 14                | 34331                  | 1124             |         | +         |     |     | 0.93 (0.85, 1.03) 0.980 |
| Questionnaire: Self-administered | 24                | 423527                 | 4144             |         | -         |     |     | 0.95 (0.90, 1.00)       |
| FFQ                              | 15                | 59501                  | 6799             |         | +         |     |     | 0.94 (0.88, 1.01)       |
| Dietary Recall/Survey            | 8                 | 32282                  | 1051             |         | +         |     |     | 0.94 (0.86, 1.01)       |
|                                  |                   |                        |                  |         |           |     |     |                         |
|                                  |                   |                        | 1                |         |           | 1.2 | 1.4 | <br>.8                  |
| Hazard ra                        | tio (9            | 5% CI)                 | .8<br>per 100    | gram/we | ek higher |     |     | .0                      |

## c. Coronary disease excluding myocardial infarction

|                              | No. of  | No. of       | lo. of   | P-value fo<br>interaction |
|------------------------------|---------|--------------|----------|---------------------------|
|                              | studies | participants | vents    | HR (95% CI)               |
| Geographical region          |         |              |          |                           |
| Western Europe               | 27      | 477525       | 046      | 1.06 (1.00, 1.13) 0.136   |
| North America                | 14      | 30876        | 62       | 1.10 (0.98, 1.24)         |
| Other                        | 6       | 14257        | 72 <     | 0.87 (0.70, 1.07)         |
| Year of baseline survey      |         |              |          |                           |
| 1970-1979                    | 7       | 30181        | 08       | 1.00 (0.87, 1.15) 0.712   |
| 1980-1989                    | 17      | 72748        | 81       | 1.11 (0.99, 1.25)         |
| 1990-1999                    | 18      | 74208        | 535      | 1.07 (0.96, 1.19)         |
| 2000+                        | 4       | 344082       | 443      | 1.04 (0.86, 1.26)         |
| Data set                     |         |              |          |                           |
| ERFC                         | 45      | 170250       | 531      | 1.08 (1.01, 1.16) 0.590   |
| EPIC-CVD                     | 1       | 26036        | 045 —    | 0.99 (0.82, 1.21)         |
| UKBiobank                    | 1       | 326372       | 404      | 1.00 (0.83, 1.20)         |
| Ascertainment approach       |         |              |          |                           |
| Questionnaire: interview     | 9       | 18988        | 20       | 1.06 (0.94, 1.19) 0.996   |
| Questionnaire: Self-administ | tered14 | 398237       | 452      | 1.04 (0.98, 1.11)         |
| FFQ                          | 11      | 48974        | 323      | 1.05 (0.96, 1.16)         |
| Dietary Recall/Survey        | 5       | 23437        | 25       | 1.05 (0.90, 1.21)         |
|                              |         |              |          |                           |
|                              |         |              | .8 1 1.2 | I I<br>1.4 1.8            |

Hazard ratio (95% CI) per 100 gram/week higher usual alcohol consumption

|                                 | No. of  |              | No. of  | P-value f               |
|---------------------------------|---------|--------------|---------|-------------------------|
|                                 | studies | participants | events  | HR (95% CI) interaction |
| Geographical region             |         |              |         |                         |
| Vestern Europe                  | 22      | 400215       | 1518    | 1.11 (1.03, 1.19) 0.031 |
| lorth America                   | 13      | 27398        | 996     | 1.04 (0.99, 1.09)       |
| Other                           | 5       | 19823        | 197     | 1.37 (1.10, 1.70)       |
| ear of baseline survey          |         |              |         |                         |
| 970-1979                        | 4       | 12034        | 103 🗲 💶 | 0.98 (0.73, 1.31) 0.154 |
| 1980-1989                       | 21      | 55241        | 1301    | 1.05 (1.00, 1.10)       |
| 990-1999                        | 11      | 33936        | 836     | 1.23 (1.08, 1.42)       |
| 2000+                           | 4       | 346225       | 471     | 1.09 (1.00, 1.20)       |
| Data set                        |         |              |         |                         |
| ERFC                            | 39      | 121064       | 2456    | 1.11 (1.04, 1.18) 0.693 |
| KBiobank                        | 1       | 326372       | 255     | 1.07 (0.93, 1.23)       |
| scertainment approach           |         |              |         |                         |
| Questionnaire: interview        | 12      | 31138        | 343     | 1.12 (0.95, 1.32) 0.619 |
| uestionnaire: Self administered | 113     | 383711       | 1127    | 1.16 (1.05, 1.28)       |
| FQ                              | 5       | 11738        | 352     | - 1.18 (0.94, 1.49)     |
| lietary Recall/Survey           | 3       | 6886         | 557     | 1.04 (0.91, 1.19)       |
|                                 |         |              |         |                         |
|                                 |         |              |         | I<br>1.8                |

# e. Deaths from other types of cardiovascular disease $$_{\rm No.\, of}$$ , $$_{\rm No.\, of}$$ , $$_{\rm No.\, of}$$

|                             | studies | participants | events         |           |                     | alue fo<br>raction |
|-----------------------------|---------|--------------|----------------|-----------|---------------------|--------------------|
| Geographical region         |         |              |                |           |                     |                    |
| Western Europe              | 27      | 439414       | 774            |           | 1.22 (1.07, 1.40)   | 0.692              |
| North America               | 12      | 28757        | 272            |           | 1.11 (0.91, 1.36)   |                    |
| Other                       | 6       | 19425        | 75 <b>&lt;</b> |           | 1.07 (0.68, 1.67)   |                    |
| Year of baseline survey     |         |              |                |           |                     |                    |
| 1970-1979                   | 5       | 25535        | 170 🗲          |           | 0.97 (0.72, 1.32)   | 0.559              |
| 1980-1989                   | 19      | 59213        | 443            | <b></b>   | 1.19 (1.00, 1.41)   |                    |
| 1990-1999                   | 16      | 53922        | 337            |           | 1.23 (0.99, 1.54)   |                    |
| 2000+                       | 4       | 347487       | 155            |           | → 1.31 (0.93, 1.85) |                    |
| Data set                    |         |              |                |           |                     |                    |
| ERFC                        | 44      | 161224       | 1018           |           | 1.18 (1.05, 1.33)   | 0.978              |
| UKBiobank                   | 1       | 326372       | 103 -          |           | 1.17 (0.81, 1.71)   |                    |
| Ascertainment approach      |         |              |                |           |                     |                    |
| Questionnaire: Interview    | 10      | 27473        | 247            |           | 1.08 (0.84, 1.38)   | 0.461              |
| Questionnaire: Self adminis | tered16 | 393224       | 433            |           | 1.16 (0.98, 1.37)   |                    |
| FFQ                         | 8       | 12251        | 209 🗲          |           | 1.04 (0.76, 1.40)   |                    |
| Dietary Recall/Survey       | 5       | 26313        | 87             |           | 1.38 (1.06, 1.78)   |                    |
|                             |         |              |                |           |                     |                    |
|                             |         |              | ا<br>8.        | 1 1.2 1.4 | 1.8                 |                    |

Hazard ratio (95% CI) per 100 gram/week higher usual alcohol consumption

Adjusted for age, smoking and history of diabetes, and stratified by sex and EPIC centre. Studies with fewer than five events of any outcome were excluded from the analysis of that outcome. The sizes of the boxes are proportional to the inverse of the variance of the log-transformed hazard ratios.

Geographical region "other" included studies in Australia and New Zealand. Studies from Japan were exlcuded. The studies included in this analysis recruited participants over different calendar periods (ERFC: 1964-2008; EPIC-CVD: 1990-2002; UK Biobank: 2005-2014)

**eFigure 20a-e:** Hazard ratios per 100 gram/week higher usual alcohol consumption for major cardiovascular outcomes amongst current drinkers by individual-level characteristics.

| Characteristic                 | No. of<br>studies | No. of<br>events |             | HR (95% CI)       | P-value for<br>interaction | Characteristic            | No. of<br>studies | No. of<br>events | HR (95% CI)       | P-value for<br>interaction |
|--------------------------------|-------------------|------------------|-------------|-------------------|----------------------------|---------------------------|-------------------|------------------|-------------------|----------------------------|
| Sex                            |                   |                  |             |                   | Interdedent                | Sex                       |                   |                  |                   |                            |
| Male                           | 54                | 6194             |             | 1.16 (1.11, 1.21) | 0.947                      | Male                      | 54                | 8837             | 0.94 (0.90, 0.98) | 0.944                      |
| Female                         | 54                | 4663             |             | 1.16 (1.09, 1.23) | 0.041                      | Female                    | 54                | 3384             | 0.95 (0.82, 1.09) | 0.011                      |
| remaie                         | 54                | 4005             | -           | 1.10 (1.00, 1.20) |                            | remaie                    | 01                | -                | 0.00 (0.02, 1.00) |                            |
| Age at survey (yrs)            |                   |                  |             |                   |                            | Age at survey (yrs)       |                   |                  |                   |                            |
| 40-59                          | 32                | 1084             |             | 1.24 (1.15, 1.33) | 0.078                      | 40-59                     | 33                | 1685 —           | 1.01 (0.93, 1.10) | 0.064                      |
| 60-69                          | 40                | 2193             |             | 1.21 (1.14, 1.29) |                            | 60-70                     | 41                | 3111             | 0.99 (0.91, 1.09) |                            |
| 70+                            | 41                | 4256             |             | 1.13 (1.05, 1.22) |                            | 70+                       | 41                | 3945             | 0.90 (0.82, 1.00) |                            |
| Ethnicity                      |                   |                  |             |                   |                            | Ethnicity                 |                   |                  |                   |                            |
| White                          | 17                | 2569             |             | 1.12 (1.07, 1.17) | 0.979                      | White                     | 16                | 3718 -           | 0.95 (0.90, 1.00) | 0.794                      |
| Non-white                      | 17                | 246              |             | 1.12 (1.02, 1.24) | 0.010                      | Non-white                 | 16                | 226              | 0.93 (0.82, 1.06) | 0.101                      |
| NOT-WHILE                      | .,                | 2-10             | _           | 1.12 (1.02, 1.24) |                            | NOT-WHILE                 | .0                |                  | 0.00 (0.02, 1.00) |                            |
| Smoking status                 |                   |                  |             |                   |                            | Smoking status            |                   |                  |                   |                            |
| Other                          | 80                | 8206             | +           | 1.15 (1.12, 1.18) | 0.176                      | Other                     | 83                | 8894             | 0.95 (0.92, 0.99) | 0.160                      |
| Current                        | 79                | 3813             | -           | 1.12 (1.09, 1.16) |                            | Current                   | 83                | 5625             | 0.92 (0.89, 0.96) |                            |
| History of diabetes            |                   |                  |             |                   |                            | History of diabetes       |                   |                  |                   |                            |
| Other                          | 70                | 11092            | -           | 1.16 (1.12, 1.19) | 0.585                      | Other                     | 73                | 13367 -          | 0.96 (0.92, 1.00) | 0.001                      |
| Definite diabetic              | 70                | 910              | <b></b>     | 1.18 (1.10, 1.27) |                            | Definite diabetic         | 73                | 1081             | 0.83 (0.76, 0.90) |                            |
| BMI (kg/m2)                    |                   |                  |             |                   |                            | BMI (kg/m2)               |                   |                  |                   |                            |
| Bottom tertile                 | 68                | 3788             |             | 1.21 (1.15, 1.28) | 0.031                      | Bottom tertile            | 71                | 3732             | 0.95 (0.90, 1.00) | 0.704                      |
| Middle tertile                 | 68                | 3926             |             | 1.14 (1.09, 1.19) | 0.001                      | Middle tertile            | 71                | 5018             | 0.97 (0.92, 1.03) | 0.101                      |
| Top tertile                    | 68                | 4019             |             | 1.15 (1.09, 1.19) |                            | Top tertile               | 71                | 5467             | 0.94 (0.89, 1.00) |                            |
| rop tertile                    | 00                | 4015             |             | 1.15 (1.05, 1.20) |                            | Top terme                 | /1                | 5407             | 0.04 (0.00, 1.00) |                            |
| SBP (mmHg)                     |                   |                  |             |                   |                            | SBP (mmHg)                |                   |                  |                   |                            |
| Bottom tertile                 | 70                | 2029             |             | 1.12 (1.07, 1.18) | 0.012                      | Bottom tertile            | 73                | 2726             | 0.94 (0.88, 1.01) | 0.661                      |
| Middle tertile                 | 70                | 3165             |             | 1.06 (1.02, 1.11) |                            | Middle tertile            | 73                | 4256             | 0.93 (0.88, 0.99) |                            |
| Top tertile                    | 70                | 6103             | -           | 1.16 (1.12, 1.21) |                            | Top tertile               | 73                | 6537             | 0.92 (0.86, 0.97) |                            |
| HDL-C (mmol/l)                 |                   |                  |             |                   |                            | HDL-C (mmol/l)            |                   |                  |                   |                            |
| Bottom tertile                 | 55                | 2746             | <b>_</b>    | 1.20 (1.13, 1.28) | 0.431                      | Bottom tertile            | 61                | 4487 -           | 0.99 (0.93, 1.04) | 0.295                      |
| Middle tertile                 | 55                | 2709             |             | 1.25 (1.17, 1.33) |                            | Middle tertile            | 61                | 3377 —           | 1.01 (0.93, 1.11) |                            |
| Top tertile                    | 54                | 2522             | <b>⊢</b> ∎− | 1.20 (1.11, 1.30) |                            | Top tertile               | 60                | 2047             | 1.04 (0.97, 1.12) |                            |
| Total physical activ           | itv index         |                  |             |                   |                            | Total physical activ      | tv index          |                  |                   |                            |
| Inactive/ moderately inactive/ |                   | 2627             |             | 1.14 (1.08, 1.20) | 0.503                      | Inactive/ moderately inac |                   | 2929             | 0.88 (0.83, 0.93) | 0.460                      |
| Moderately active              | 1                 | 1904             |             | 1.15 (1.07, 1.23) | 0.000                      | Moderately active         | 1                 | 1965             | 0.84 (0.78, 0.90) | 0.100                      |
| Active                         | 1                 | 385              | <u> </u>    | 1.23 (1.09, 1.39) |                            | Active                    | 1                 | 397              | 0.90 (0.79, 1.03) |                            |
| Calfaranatad                   |                   |                  |             |                   |                            | Colf reported             | al bootth         |                  |                   |                            |
| Self-reported gene             |                   | 0050             |             | 4 40 /4 40 4 00   | 0.040                      | Self-reported gener       |                   | 2520             |                   | 0.964                      |
| Bottom half                    | 20                | 2252             |             | 1.19 (1.10, 1.29) | 0.913                      | Bottom half               | 20                |                  | 0.95 (0.84, 1.07) | 0.904                      |
| Top half                       | 20                | 465              |             | 1.18 (1.07, 1.31) |                            | Top half                  | 20                | 482              | 0.94 (0.83, 1.08) |                            |
|                                |                   |                  |             |                   |                            |                           |                   |                  |                   |                            |

Hazard ratio (95% CI) per 100 gram/week higher usual alcohol consumption

Hazard ratio (95% CI) per 100 gram/week higher usual alcohol consumption

|  | uding myocar |  |
|--|--------------|--|
|  |              |  |

| d. F | leart | fai | lure |
|------|-------|-----|------|
|      |       |     |      |

| Characteristic              | No. of<br>studies | No. of<br>events |                    | HR (95% CI)       | P-value for<br>interaction | Characteristic      | No. of<br>studies | events | HR (95%               | CI) P-value for<br>interaction |
|-----------------------------|-------------------|------------------|--------------------|-------------------|----------------------------|---------------------|-------------------|--------|-----------------------|--------------------------------|
| Sex                         |                   |                  |                    |                   |                            | Sex                 |                   |        |                       |                                |
| Male                        | 32                | 4944             |                    | 1.06 (0.99, 1.13) | 0.285                      | Male                | 33                | 1411   | 1.13 (1.06,           | 1.21) 0.401                    |
| Female                      | 32                | 2354             |                    | 1.18 (0.99, 1.41) |                            | Female              | 33                | 1031 - | 1.07 (0.94,           |                                |
| Age at survey (yrs          |                   |                  |                    |                   |                            |                     |                   |        |                       |                                |
| 40-59                       | 23                | 876              |                    | 1.15 (1.07, 1.24) | 0.002                      | Age at survey (yrs  |                   |        |                       |                                |
| 60-69                       | 28                | 2176             | ┼┻─                | 1.05 (0.97, 1.15) |                            | 40-59               | 15                | 171    | 1.17 (1.02,           |                                |
| 70+                         | 28                | 3799 -           | <b></b>            | 1.00 (0.91, 1.10) |                            | 60-69               | 20                | 504    | → 1.30 (1.10,         |                                |
| Ethnicity                   |                   |                  |                    |                   |                            | 70+                 | 20                | 845    | 1.11 (0.95,           | 1.29)                          |
| White                       | 14                | 3761             |                    | 1.01 (0.95, 1.07) | 0.009                      |                     |                   |        |                       |                                |
|                             | 14                | 220              | Τ                  |                   | 0.009                      | Ethnicity           |                   |        |                       |                                |
| Non-white                   | 14                | 220              |                    | 1.19 (1.06, 1.33) |                            | White               | 10                | 1028   | <b>→■</b> 1.04 (0.96, | 1.13) 0.268                    |
| Smoking status              |                   |                  |                    |                   |                            | Non-white           | 10                | 166    | 1.10 (0.99,           | 1.22)                          |
| Other                       | 52                | 6016             |                    | 1.07 (0.99, 1.16) | 0.516                      |                     |                   |        |                       |                                |
| Current                     | 52                | 1949             |                    | 1.10 (1.03, 1.18) | 0.010                      | Smoking status      |                   |        |                       |                                |
| ourient                     | 02                | 1010             | _                  | 1.10 (1.00, 1.10) |                            | Other               | 40                | 1937   | 1.18 (1.08,           | 1.29) 0.766                    |
| History of diabetes         |                   |                  |                    |                   |                            | Current             | 40                | 774    | 1.20 (1.09,           | · ·                            |
| Other                       | 47                | 7373             |                    | 1.06 (1.00, 1.12) | 0.716                      | odirolik            | 10                |        | - 1.20 (1.00,         |                                |
| Definite diabetic           | 47                | 607              |                    | 1.04 (0.92, 1.17) | 01110                      | History of diabetes | 2                 |        |                       |                                |
|                             |                   |                  |                    | ,,                |                            | Other               | 39                | 2357   | <b>—</b> 1.13 (1.06,  | 1.21) 0.572                    |
| BMI (kg/m2)                 |                   |                  |                    |                   |                            |                     | 39<br>39          | 346    |                       |                                |
| Bottom tertile              | 42                | 1879             |                    | 1.14 (1.06, 1.23) | 0.010                      | Definite diabetic   | 39                | 340    | 1.18 (1.01,           | 1.37)                          |
| Middle tertile              | 42                | 2668             | ┼┱╌                | 1.05 (0.98, 1.12) |                            |                     |                   |        |                       |                                |
| Top tertile                 | 42                | 3208             |                    | 1.15 (1.07, 1.24) |                            | BMI (kg/m2)         |                   |        |                       |                                |
|                             |                   |                  |                    |                   |                            | Bottom tertile      | 36                | 666    | 1.17 (1.07,           |                                |
| SBP (mmHg)                  |                   |                  |                    |                   |                            | Middle tertile      | 36                | 741    | 1.15 (1.04,           |                                |
| Bottom tertile              | 46                | 1380             | +                  | 1.07 (0.97, 1.18) | 0.727                      | Top tertile         | 36                | 1159   | 1.10 (1.00,           | 1.20)                          |
| Middle tertile              | 46                | 2420             | +                  | 1.06 (0.97, 1.16) |                            |                     |                   |        |                       |                                |
| Top tertile                 | 46                | 3989             | +                  | 1.09 (0.97, 1.22) |                            | SBP (mmHg)          |                   |        |                       |                                |
|                             |                   |                  |                    |                   |                            | Bottom tertile      | 38                | 617    | 1.07 (0.97,           | 1.19) 0.587                    |
| HDL-C (mmol/l)              |                   |                  |                    |                   |                            | Middle tertile      | 38                | 761    | 1.11 (1.01,           | 1.21)                          |
| Bottom tertile              | 36                | 1385             |                    | 1.14 (1.01, 1.27) | 0.046                      | Top tertile         | 38                | 1282   | 1.15 (1.06,           |                                |
| Middle tertile              | 36                | 1291             |                    | 1.30 (1.13, 1.49) |                            |                     |                   |        | ,                     | ··/                            |
| Top tertile                 | 35                | 932              |                    | 1.17 (1.06, 1.29) |                            | HDL-C (mmol/l)      |                   |        |                       |                                |
| <b></b>                     |                   |                  |                    |                   |                            | Bottom tertile      | 29                | 682    | 1.18 (1.03,           | 1.36) 0.430                    |
| Total physical acti         |                   | 070              |                    | 4.00 /0.05 4.47   | 0.044                      | Middle tertile      | 29                | 609    | 1.18 (1.03,           |                                |
| Inactive/Moderately act     |                   | 876              |                    | 1.06 (0.95, 1.17) | 0.014                      | Top tertile         | 29                | 595    | 1.15 (0.99,           |                                |
| Moderately active<br>Active | 1                 | 963              |                    | 0.86 (0.75, 0.98) |                            | Top tertile         | 20                | 292    | 1.13 (0.99,           | 1.55)                          |
| Active                      | 1                 | 167              |                    | 1.14 (0.91, 1.41) |                            | Self-reported gen   | eral health       |        |                       |                                |
| Self-reported gene          | eral health       |                  |                    |                   |                            | Bottom half         | 15                | 820    | 1.15 (1.04,           | 1.28) 0.254                    |
| Bottom half                 | 13                | 3775             | <b>+-</b>          | 1.05 (0.96, 1.15) | 0.479                      | Top half            | 15                | 249    | → 1.27 (1.06,         |                                |
| Top half                    | 13                | 620              | ┼╼──               | 1.08 (0.97, 1.21) |                            |                     | 15                | 243    |                       | 1.52)                          |
|                             |                   | <u> </u>         |                    |                   |                            |                     |                   |        | +                     |                                |
|                             |                   | .7 .8 .9         | 1 1.1 1.2 1.31.41. | 5                 |                            |                     |                   |        | 1 1.1 1.2 1.3 1.4 1.5 |                                |

| Characteristic      | No. of<br>studies | No. of<br>events |                     |                    | HR (95% CI)       | P-value for<br>interaction |
|---------------------|-------------------|------------------|---------------------|--------------------|-------------------|----------------------------|
| Sex                 |                   |                  |                     |                    |                   |                            |
| Male                | 30                | 538              |                     | <b>e</b>           | 1.19 (1.03, 1.37) | 0.139                      |
| Female              | 30                | 301              |                     | <b>=</b> >         |                   |                            |
|                     |                   |                  |                     |                    |                   |                            |
| Age at survey (yrs) | )                 |                  |                     |                    |                   |                            |
| 50-59               | 19                | 76               |                     | <b>∎</b> →         | 1.37 (1.13, 1.66) | 0.277                      |
| 60-69               | 25                | 137              | _                   | <b>_</b>           | 1.16 (0.94, 1.44) |                            |
| 70+                 | 25                | 379              |                     | <b>e</b>           | 1.18 (1.01, 1.38) |                            |
| Ethnicity           |                   |                  |                     |                    |                   |                            |
| White               | 10                | 275              |                     | -                  | 1.05 (0.91, 1.21) | 0.829                      |
| Non-white           | 10                | 47               |                     | -                  | 1.07 (0.82, 1.40) |                            |
| Smoking status      |                   |                  |                     |                    |                   |                            |
| Other               | 45                | 717              |                     | <b>_</b>           | 1.25 (1.12, 1.39) | 0.125                      |
| Current             | 45                | 404              |                     |                    | 1.14 (0.99, 1.32) |                            |
| History of diabetes |                   |                  |                     |                    |                   |                            |
| Other               | 45                | 1034             |                     |                    | 1.19 (1.08, 1.31) | 0.064                      |
| Definite diabetic   | 45                | 87               |                     | <b>∎→</b>          | 1.39 (1.17, 1.65) |                            |
| BMI (kg/m2)         |                   |                  |                     |                    |                   |                            |
| Bottom tertile      | 42                | 308              |                     | <b>_</b>           | 1.25 (1.09, 1.43) | 0.412                      |
| Middle tertile      | 42                | 325              |                     | <b>_</b>           | 1.16 (1.00, 1.33) |                            |
| Top tertile         | 42                | 402              |                     |                    | 1.27 (1.13, 1.43) |                            |
| SBP (mmHg)          |                   |                  |                     |                    |                   |                            |
| Bottom tertile      | 43                | 152              |                     | <b>e</b>           | 1.19 (1.02, 1.39) | 0.866                      |
| Middle tertile      | 43                | 314              |                     | <b>_</b>           | 1.14 (0.99, 1.31) |                            |
| Top tertile         | 43                | 620              |                     |                    | 1.16 (1.01, 1.33) |                            |
| HDL-C (mmol/l)      |                   |                  |                     |                    |                   |                            |
| Bottom tertile      | 33                | 265              |                     | <b>_</b> >         | 1.31 (1.09, 1.57) | 0.554                      |
| Middle tertile      | 33                | 215              | -                   | <b></b>            | 1.16 (0.96, 1.40) |                            |
| Top tertile         | 33                | 205              |                     |                    | 1.25 (1.07, 1.45) |                            |
| Self-reported gene  | ral health        |                  |                     |                    |                   |                            |
| Bottom half         | 10                | 225              |                     | <b>_</b> >         | 1.20 (0.89, 1.61) | 0.585                      |
| Top half            | 10                | 56               |                     | _∎>                | 1.08 (0.73, 1.60) |                            |
|                     |                   |                  |                     |                    |                   |                            |
|                     |                   |                  | <b>III</b><br>7.8.9 | 1.1 1.2 1.3 1.4 1. |                   |                            |

## e. Deaths from other types of cardiovascular disease

Hazard ratio (95% CI) per 100 gram/week higher usual alcohol consumption

HRs were adjusted for age, smoking and history of diabetes and stratified by EPIC centre. BMI = body mass index; bottom third  $<24.10 \text{ kg/m}^2$ , middle third  $24.10-27.18 \text{ kg/m}^2$ , top third  $>27.18 \text{ kg/m}^2$ . SBP = systolic blood pressure; bottom third <123 mmHg, middle third 123-141 mmHg, top third >141 mmHg. HDL-c bottom third <1.10 mmol/l, middle third 1.19-1.51 mmol/l and top third >1.51 mmol/l. Self-reported general health[0-1] bottom half <0.67, top half>=0.67.



eFigure 21. Funnel plots and assessment of small-study effects for study-specific hazard ratios per 100 gram/week increase in usual alcohol consumption for major vascular outcomes amongst current drinkers.

46

**eFigure 22.** Estimated future years of life lost in individuals reporting drinking above a range of hypothetical alcohol consumption thresholds compared to those reporting drinking less than the hypothetical alcohol consumption thresholds.



**Interpretation:** Males who reported drinking above 196 g/wk threshold have approximately 2.7 years (95% CI: 2.4-3.1) lower life expectancy at age 40 years than those who reported drinking below 196 g/wk. Similarly, males who reported drinking above 112 g/wk threshold have approximately 1.6 years (95% CI: 1.3-1.8) lower life expectancy at 40 years than those who reported drinking below 112 g/wk.

The estimates of cumulative survival from 40 years of age onward among the drinking groups were calculated by applying hazard ratios (specific to age at risk) for all-cause mortality associated with baseline alcohol consumption to US death rates at the age of 40 years or older.

#### **Annex 6. Emerging Risk Factors Collaboration Investigators**

Air Force/Texas Coronary Artherosclerosis Prevention Study (AFTCAPS): Robert W Tipping; Artherosclerosis Risk in Communities Study (ARIC): David Couper, Elizabeth Selvin, Pamela Lutsey; Cohort of Progetto CUORE (ATENA, MATISS83, 87 & 93): Chiara Donfrancesco, Luigi Palmieri, Simona Giampaoli; ATTICA Study (ATTICA): Christina Chrysohoou, Christos Pitsavos, Dimitrios Tousoulis; Australian Diabetes, Obesity, and Lifestyle Study (AUSDIAB): Dianna J Magliano, Jonathan E Shaw, Paul Z Zimmet; Busselton Health Study (BHS): Matthew W Knuiman; Bruneck Study (BRUN): Johann Willeit, Marlene Notdurfter, Siegfried Weger; British Women's Health and Heart Study (BWHHS): Antoinette Amuzu, Caroline E Dale, Juan P Casas; Caerphilly Prospective Study (CAPS): Yoav Ben-Shlomo; Cardiovascular Study in the Elderly (CASTEL): Edoardo Casiglia, Valérie Tikhonoff: Charleston Health Study (CHARL): Susan E Sutherland: Cardiovascular Health Study (CHS): Bruce M Psaty, Mary Cushman; Copenhagen City Heart Study (COPEN): Anne Tybjærg-Hansen, Janne S Tolstrup, Morten Grønbaek; Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR): Beverley Balkau, Fabrice Bonnet, Michel Marre; Diet and Risk of Cardiovascular Disease in Spain (DRECE): David Lora Pablos, Miguel Menendez Orenga, Pilar Cancelas Navia; Dubbo Study of the Elderly (DUBBO): John McCallum, Yechiel Friedlander; Edinburgh Artery Study (EAS): Jackie Price, Stela Mclachlan; The Established Populations for the Epidemiologic Study of the Elderly Studies, Boston (EPESEBOS): James O Taylor; The Established Populations for the Epidemiologic Study of the Elderly Studies, Iowa (EPESEIOW): Robert Wallace; The Established Populations for the Epidemiologic Study of the Elderly Studies, New Haven (EPESENHA): Harlan Krumholz; The Established Populations for the Epidemiologic Study of the Elderly Studies, North Carolina (EPSENCA): Dan Blazer; Epidemiologische Studie zu Chancen der Verhütung und optimierten Therapie chronischer Erkrankungen in der älteren Bevölkerung (ESTHER): Ben Schöttker, Bernd Holleczek, Kai-Uwe Saum; Finrisk Cohort 1992 and 1997 (FINRISK92 FINRISK97): Erkki Vartiainen, Kennet Harald, Pekka Jousilahti; Fletcher Challenge Blood Study (FLETCHER): Mark Woodward; Funagata Study (FUNAGATA): Takamasa Kayama, Takeo Kato, Toshihide Oizumi; Golstrup Study (GOLSTRUP): Else Marie Bladbjerg, Jørgen Jespersen; Cohorts of the Risk Factors and Life Expectancy Pooling Project (GREPCO, MICOL, and NHR): Maurizio Trevisan; Helsinki Businessmen Study (HBS): Timo Strandberg; Hertfordshire Cohort Study (HCS): Cyrus Cooper, Elaine Dennison, Karen Jameson; Health in Men Study (HIMS): Graeme J Hankey, Leon Flicker, Osvaldo P Almeida; Hisayama Study (HISAYAMA): Toshiharu Ninomiya, Yasufumi Doi, Yutaka Kiyohara; Cohorts of CONOR (HUBRO, OPPHED, FINNMARK, and TROMS): Anne Johanne Søgaard, Inger Ariansen; Ikawa, Kyowa, and Noichi Study (IKNS) and Osaka Study (OSAKA): Akihiko Kitamura, Hiroyasu Iso, Kazumasa Yamagishi; North Karelia Project (KARELIA): Veikko Salomaa; Kuopio Ischaemic Heart Disease Study (KIHD): Jukka T Salonen, Kurl Sudhir, Tomi-Pekka Tuomainen; Longitudinal Aging Study Amsterdam (LASA): Hannie C Comijs, Renate de Jongh; Monitoring of CVD Risk Factors Project/Monitoring Project on Chronic Disease Risk Factors (MCVDRFP/MORGEN): Anneke Blokstra, Jet HA Smit, W M Monique Verschuren; MESA: Ralph Sacco, Robyn McClelland; MONICA/KORA Augsburg Surveys S1, S2, and S3 (MONICA KORA1, MONICA KORA2, MONICA KORA3): Christa Meisinger, Wolfgang Koenig; MRC Study of Older People (MRCOLD): Astrid Fletcher; Multiple Risk Factor Intervention Trial 1 (MRFIT): Lewis H Kuller; First and Third National Health and Nutrition Examination Surveys (NHANES1, NHANES III): Richard F Gillum; Northwick Park Heart Study II (NPHSII): Jackie A Cooper; Nova Scotia Heart Survey (NSHS: Jonathan Shaffer, Joseph E Schwartz, Susan Kirkland; Oslo Study (OSLO2): Anne-Lise Lund Håheim; Puerto Rico Heart Health Program (PRHHP): Carlos J Crespo; Prospective Epidemiological Study of Myocardial Infarction (PRIME): Dominique Arveiler, Jean Ferrières, Michèle Montaye; Prospective Cardiovascular Münster Study (PROCAM): Gerd Assmann, Helmut Schulte; Prospective Study of Pravastatin in the Elderly at Risk (PROSPER): Stella Trompet, Wouter Jukema; Quebec Cardiovascular Study (QUEBEC): Benoît Lamarche, Bernard Cantin, Gilles R Dagenais; Rancho Bernardo Study (RANCHO): Deborah Wingard, Gail Laughlin, Kay Tee Khaw; The Rotterdam Study I (RS-1): Arfan Ikram, Frank van Rooij, Kim V E Braun; The Rotterdam Study II (RS-2): Ester A L de Jonge, Jessica Kiefte-de Jong, Maryam Kavousi; The Rotterdam Study III (RS-3): Henning Tiemeier, Taulant Muka, Zhangling Chen; Scottish Heart Health Extended Cohort (SHHEC): Hugh Tunstall-Pedoe; Toyama Study (TOYAMA): Hideaki Nakagawa, Masao Ishizaki, Yuko Morikawa; Uppsala Longitudinal Study of Adult Men (ULSAM): Martin Ingelsson, Vilmantas Giedraitis; Württemberg Construction Workers Cohort (WCWC): Dietrich Rothenbacher, Heiner Claessen, Hermann Brenner; Women's Health Initiative (Hormones and Biomarkers Predicting Stroke in Women; WHIHABPS): Amanda Fretts, Stacey Jolly, William James Howard; Whitehall I Study (WHITEI): Martin Shipley, Mika Kivimaki; Whitehall II Study (WHITEII): Eric J Brunner, Martin Shipley; West of Scotland Coronary Prevention Study (WOSCOPS): Michele Robertson, Naveed Sattar; Zutphen Elderly Study (ZUTE): Edith Feskens, Marianne Geleijnse, Daan Kromhout.