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Materials and Methods 

1. Model Configuration and Initialization 
The transmission model incorporates information on human movement within the following 
metapopulation structure: 
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where 𝑆𝑆𝑖𝑖, 𝐸𝐸𝑖𝑖, 𝐼𝐼𝑖𝑖𝑟𝑟, 𝐼𝐼𝑖𝑖𝑢𝑢 and 𝑁𝑁𝑖𝑖 are the susceptible, exposed, documented infected, undocumented 
infected and total population in city i. Note that we define patients with symptoms severe enough 
to be confirmed as documented infected individuals; whereas other infected persons are defined 
as undocumented infected individuals. We provide a rate parameter, β, for the transmission rate 
due to documented infected individuals. The transmission rate due to undocumented individuals 
is reduced by a factor 𝜇𝜇. In addition, 𝛼𝛼 is the fraction of documented infections, Z is the average 
latency period and D is the average duration of infection. The effective reproduction number 
(𝑅𝑅𝑒𝑒) is calculated as 𝑅𝑅𝑒𝑒 = 𝛼𝛼𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝜇𝜇𝜇𝜇𝜇𝜇 (see Section 6 below for details). Spatial 
coupling within the model is represented by the daily number of people traveling from city j to 
city i (𝑀𝑀𝑖𝑖𝑖𝑖) and a multiplicative factor, 𝜃𝜃, which is greater than 1 to reflect underreporting of 
human movement. We assume that individuals in the 𝐼𝐼𝑖𝑖𝑟𝑟 group do not move between cities, 
though these individuals can move between cities during the latency period. A similar 
metapopulation model has been used to forecast the spatial transmission of influenza in the 
United States (20). 

The core model structure (Equations 1-5) was integrated stochastically using a 4th order Runge-
Kutta (RK4) scheme. Specifically, for each step of the RK4 scheme, each unique term on the 
righthand side (rhs) of Equations 1-4 was determined using a random sample from a Poisson 
distribution, i.e.  
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The solutions for Equations 1-4 were then calculated as: 
 

𝑑𝑑𝑆𝑆𝑖𝑖
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Equation 5 was solved deterministically. 
 
The initial prior ranges of the parameters for the model were drawn using Latin hypercube 
sampling from uniform distributions with the following prior ranges: 

• 𝛽𝛽: the transmission rate of symptomatically infected patients. 0.8 ≤ 𝛽𝛽 ≤ 1.5 
• 𝜇𝜇: the multiplicative factor reducing the transmission rate of unreported infected patients. 

0.2 ≤ 𝜇𝜇 ≤ 1. 
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• 𝜃𝜃: the multiplicative factor to adjust mobility data estimates of human movement 
between cities. 1 ≤ 𝜃𝜃 ≤ 1.75. 

• 𝑍𝑍: the mean latency period. 2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 𝑍𝑍 ≤ 5 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 
• 𝛼𝛼: the fraction of infections that develop severe symptoms. 0.02 ≤ 𝛼𝛼 ≤ 1.0.  
• 𝐷𝐷: the average duration of infection for infected patients. 2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 𝐷𝐷 ≤ 5 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 

The initial prior ranges for 𝛼𝛼 and 𝜇𝜇 were chosen to cover most possible values, i.e. [0,1]; the 
initial prior ranges for the latency and infection periods, Z and D, were provided in order to 
produce an aggregate period range of 4-10 days spanning previous estimates for the total 
infection period and generation time (6, 14, 15), as well as previously published estimates for 
other coronaviruses (summarized in Table 1 of 13); the initial prior range for 𝛽𝛽 was set to enable 
a broad initial range for 𝑅𝑅𝑒𝑒 (i.e. [0.35, 7.5], based on 𝑅𝑅𝑒𝑒 = 𝛼𝛼𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝜇𝜇𝜇𝜇𝜇𝜇); and the initial 
prior range for 𝜃𝜃 was set to capture the discrepancy between recorded Tencent travel volume and 
reported travel (1). Note that the Ensemble Adjustment Kalman Filter (EAKF, described in 
Section 5 below) is not constrained by the initial priors and can migrate outside these ranges to 
obtain system solutions. 
 
For the outbreak origin, Wuhan city, the initial exposed population, 𝐸𝐸𝑤𝑤𝑤𝑤ℎ𝑎𝑎𝑎𝑎, and initial 
undocumented infected population, 𝐼𝐼𝑤𝑤𝑤𝑤ℎ𝑎𝑎𝑎𝑎𝑢𝑢 , were drawn from a uniform distribution 
[0, 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚]. A single emergence of SARS-CoV2 has been estimated to have occurred in late 
2019.  Specifically, the most recent common ancestor (TMRCA) is estimated for 17 November 
2019; [95% CI: 27 August – 19 December] (21).  Assuming Wuhan as the epicenter with 
emergence on November 17 and an estimated doubling time of 6.4 days [95% CI: 5.8-7.1 days] 
(13) implies about 400 cumulative infections (most still latent or still infectious) [95% CI: 180-
715] on January 10, the start date of our transmission model simulations. If we use a November 1 
emergence—still well within the TMRCA 95% CI—these numbers rise considerably to about 
2000 cumulative infections [95% CI: 1000-4000].  We used this last upper estimate to set 
𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  (2000 initial latent (E0) and undocumented infections (I0u) on January 10).  Note 
𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 only sets an upper bound: each model simulation randomly selects a number from 0 to 
𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 (i. e. 0 ≤ E0 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚; 0 ≤ I0u ≤ 𝑆𝑆𝑆𝑆𝑒𝑒𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚). Also, although infections were 
documented prior to January 10, these cases were sporadic and the EAKF adjustment can 
account for the effects of these early infections (by selecting elevated exposed and unreported 
infection levels). For other cities, we defined 𝐶𝐶𝑖𝑖 as the number of travelers from Wuhan to city 𝑖𝑖 
on the first day of Chunyun. The initial exposed, documented infected and undocumented 
infected populations were set to 𝐸𝐸𝑖𝑖 = 3𝐶𝐶𝑖𝑖𝐸𝐸𝑤𝑤𝑤𝑤ℎ𝑎𝑎𝑎𝑎/𝑁𝑁𝑤𝑤𝑤𝑤ℎ𝑎𝑎𝑎𝑎, 𝐼𝐼𝑖𝑖𝑟𝑟 = 0 and 𝐼𝐼𝑖𝑖𝑢𝑢 = 3𝐶𝐶𝑖𝑖𝐼𝐼𝑤𝑤𝑤𝑤ℎ𝑎𝑎𝑎𝑎𝑢𝑢 /𝑁𝑁𝑤𝑤𝑤𝑤ℎ𝑎𝑎𝑎𝑎.  

2. Observations of Confirmed COVID-19 Cases 
Daily numbers of confirmed cases for 375 Chinese cities (Fig. S1) were collected from official 
reports on the website of National and Provincial Health Commissions in China (1). Confirmed 
cases were defined as a suspected case with a positive test result for viral nucleic acid (22). 
These data were compiled for periods before (January 10-23, 2020) and after (January 24 – 
February 8, 2020) the January 23 implementation of travel restrictions. These data are included 
in Other Supplementary Materials (Data S1) and posted at (23).  
 
Suspected cases were diagnosed based on clinical symptoms and exposure, where exposure was 
indicated if an individual had resident history in Wuhan, travel history to Wuhan, or contact with 
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individuals from Wuhan who had experienced fever and respiratory symptoms. Additionally, the 
city of a confirmed case was the city where an individual was confirmed rather than home 
residence. Thus, individuals might acquire infection in one location, but become symptomatic 
and be confirmed in another. These definitions were consistent for the entire study period 
(January 10 – February 8, 2020). 

3. Reporting Delay  
Our transmission model (Eqs. 1-5) does not explicitly represent the process of infection 
confirmation. Thus, we mapped simulated documented infections to confirmed cases using a 
separate observational delay model. In this delay model, we account for the time interval 
between a person transitioning from latent to contagious (i.e. E  𝐼𝐼𝑖𝑖𝑟𝑟) and observational 
confirmation of that individual infection. To estimate this delay period, 𝑇𝑇𝑑𝑑, we examined line-list 
data from early confirmed cases in China (17). Prior to January 23, 2020, the time-to-event 
distribution of the interval (in days) from symptom onset to confirmation is well-fit by a Gamma 
distribution (𝑎𝑎 = 1.85,𝑏𝑏 = 3.57, 𝐿𝐿𝐿𝐿 = −252.24) [the Gamma distribution provides a better fit 
than a Weibull distribution (𝐴𝐴 = 7.29,𝐵𝐵 = 1.41, 𝐿𝐿𝐿𝐿 = −255.17)] (Fig. S2). Consequently, we 
adopted a Gamma distribution to model 𝑇𝑇𝑑𝑑. After January 23, this distribution is also well-fit by 
a Gamma distribution (𝑎𝑎 = 2.34,𝑏𝑏 = 2.59, 𝐿𝐿𝐿𝐿 = −1251.94) [Weibull distribution (𝐴𝐴 =
6.78,𝐵𝐵 = 1.63, 𝐿𝐿𝐿𝐿 = −1255.38)]. 
 
In practice during transmission model simulation, for each new documented infection 
transitioning from E to 𝐼𝐼𝑖𝑖𝑟𝑟, a random number 𝑡𝑡𝑑𝑑 was drawn from the Gamma distribution 
𝐺𝐺(𝑎𝑎,𝑇𝑇𝑑𝑑/𝑎𝑎). This new case was ‘reported’ as a confirmed infection 𝑡𝑡𝑑𝑑 days after the transition 
from E  𝐼𝐼𝑖𝑖𝑟𝑟. The reported cases on a given day were then accumulated as the model integrated 
forward in time. Because infected patients may shed SARS-CoV2 before the onset of symptoms 
(18, 24), we considered longer mean times for the reporting delay than those estimated directly 
from the line-list data. [Note that the transition from E to 𝐼𝐼𝑖𝑖𝑟𝑟 represents the onset of contagious 
shedding, not symptom onset.]  Specifically, we tested a number of Gamma distributions in 
which we fixed the shape parameter, 𝑎𝑎 = 1.85, but varied the distribution mean, 𝑇𝑇𝑑𝑑 = 𝑎𝑎𝑎𝑎, by 
increasing b.  The best-fitting model, i.e. the best combination of posterior fit parameters (see 
Section 5 below), initial maximal seeding (see Section 1 above) and reporting delay Gamma 
distribution parameters, was identified by log likelihood. 
 
4. Mobility Data 
 
To capture individual movement among the 375 cities simulated in the metapopulation model, 
we use human mobility data from the Tencent location-based service (LBS) used in popular 
Tencent mobile phone applications (Apps), such as Wechat, QQ, and Maps. These data were 
collected using the application program interface (API) from the Tencent big data platform (25).  
No identifiable information is included in the dataset (Data S1, also posted on 23).  
 
The Tencent data platform stopped releasing human mobility information between paired cities 
after 2018. (Beginning 2019 only outflows and inflows to and from Beijing have been released.) 
Other data sources, such as the Mobility Index from Baidu (16), have continued to produce 
measures of mobility, but these do not provide counts of travel that are comparable among cities. 
Consequently, we used the 2018 Tencent data and assumed the travel patterns captured in 2018 
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during Chunyun are similar to those of the analogous time period during 2020, prior to January 
23 travel restrictions. This assumption is fair, as previous studies have shown that similar travel 
patterns exist across years (26), other studies have also used prior year data to approximate travel 
patterns during 2020 (6, 13), and Baidu Mobility Index patterns are similar during 2019 and 
2020 prior to January 23. Here, we used daily data from the first 14 days of Chunyun in 2018 
(February 1 – 14, 2018) as proxy travel data for the first 14 days of Chunyun in 2020 (January 10 
– 23, 2020).  

Mobility for all age groups are included in the Tencent data. Although the usage of mobile 
differs among age groups, the constituent sources, particularly WeChat, have good penetration in 
older populations, as they are widely used for payments. Thus, we believe the data are 
representative of mobility patterns during Chunyun. 

In the Tencent mobility data, for each day, the top 10 outflows from each of 375 Chinese cities 
were recorded. For city-to-city connections for which only some of the days in this two-week 
time period rank in the top 10, we linearly interpolated missing daily outflow values. In total, 
92,248 inter-city travel records were used to represent travel during January 10-23.  

Strict travel restrictions were implemented in several Chinese cities beginning January 23, 2020. 
As a result, the 2018 mobility data we use are likely not as representative of inter-city human 
movement after travel restrictions were implemented in Wuhan. Indeed, the 2020 Baidu Mobility 
Index data (16) indicate a precipitous decrease in travel to and from Wuhan occurs after January 
23 (see Section 11, below). Inflow to Wuhan drops about 80%, and outflow from Wuhan drops 
about 98%.  We use these data on relative travel patterns after January 23 to inform the model 
fitting for January 24-February 8 (see Section 11, below). 

4.1 Gravity Model Test 
Note that we tested fitting the mobility data to gravity models with different deterrence functions 
(i.e., power-law 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑝𝑝𝑖𝑖

𝜏𝜏1𝑝𝑝𝑗𝑗
𝜏𝜏2/𝑑𝑑𝑖𝑖𝑖𝑖

𝜌𝜌 , exponential 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑝𝑝𝑖𝑖
𝜏𝜏1𝑝𝑝𝑗𝑗

𝜏𝜏2/ exp(𝑑𝑑𝑖𝑖𝑖𝑖/𝑟𝑟), and truncated 
power-law 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑝𝑝𝑖𝑖

𝜏𝜏1𝑝𝑝𝑗𝑗
𝜏𝜏2/[𝑑𝑑𝑖𝑖𝑖𝑖

𝜌𝜌 exp(𝑑𝑑𝑖𝑖𝑖𝑖/𝑟𝑟)]), where 𝑝𝑝𝑖𝑖 is the population of city 𝑖𝑖 and 𝑑𝑑𝑖𝑖𝑖𝑖 is the 
geographical distance (km) between city 𝑖𝑖 and 𝑗𝑗. The gravity models do not effectively reflect the 
observed mobility pattern (Fig. S3). As a consequence, we concluded that using a gravity model 
in the inference would not yield credible results and instead developed the metapopulation model 
presented in Section 1 above. 

5. Model-inference framework 
We infer model epidemiological parameters using an iterated filtering (IF) approach (8-10). The 
IF framework can be used to infer the maximum likelihood estimates of parameters in epidemic 
models and has been successfully applied to infectious diseases such as cholera (9) and measles 
(27). The IF framework is designed as follows: an ensemble of system states, which represent the 
distribution of parameters and variables, are repeatedly adjusted using filtering techniques in a 
series of iterations, during which the variance is gradually tuned down. In the process, the 
distribution of parameters is iteratively optimized per observations and converges to values that 
achieve maximum likelihood. 

In its original implementation, the filtering technique used for IF was sequential Monte Carlo (i.e. 
a particle filter) (28). Here, due to the high-dimensionality of the metapopulation model, we used 
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a different efficient data assimilation algorithm - the Ensemble Adjustment Kalman Filter 
(EAKF) (29). Particle filters require a large number of particles (30); however, the EAKF can 
generate similar results using only hundreds of ensemble members (20). Originally developed for 
use in weather prediction, the EAKF assumes a Gaussian distribution of both the prior and 
likelihood and adjusts the prior distribution to a posterior using Bayes rule deterministically (29).   

To represent the state-space distribution, the EAKF maintains an ensemble of system state 
vectors acting as samples from the distribution. In particular, the EAKF assumes that both the 
prior distribution and likelihood are Gaussian, and thus can be fully characterized by their first 
two moments (mean and variance). The update scheme for ensemble members is computed using 
Bayes rule (posterior ∝ prior × likelihood) via the convolution of the two Gaussian distributions. 
For observed state variables, the posterior of the 𝑖𝑖th ensemble member is updated through 

𝑜𝑜𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 =

𝜎𝜎𝑡𝑡,𝑜𝑜𝑜𝑜𝑜𝑜
2

𝜎𝜎𝑡𝑡,𝑜𝑜𝑜𝑜𝑜𝑜
2 + 𝜎𝜎𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

2 𝑜̅𝑜𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +
𝜎𝜎𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2

𝜎𝜎𝑡𝑡,𝑜𝑜𝑜𝑜𝑜𝑜
2 + 𝜎𝜎𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

2 𝑜𝑜𝑡𝑡 + �
𝜎𝜎𝑡𝑡,𝑜𝑜𝑜𝑜𝑜𝑜
2

𝜎𝜎𝑡𝑡,𝑜𝑜𝑜𝑜𝑜𝑜
2 + 𝜎𝜎𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

2 �𝑜𝑜𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 − 𝑜̅𝑜𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�. 

Here 𝑜𝑜𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖  and 𝑜𝑜𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟

𝑖𝑖  are the posterior and prior of the observed variable for the 𝑖𝑖th ensemble 
member at time 𝑡𝑡; 𝑜̅𝑜𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the mean of the prior observed variable; 𝜎𝜎𝑡𝑡,𝑜𝑜𝑜𝑜𝑜𝑜

2  and 𝜎𝜎𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2  are the 

variances of the observation and the prior observed variable; and 𝑜𝑜𝑡𝑡 is the observation at time 𝑡𝑡. 
Unobserved variables and parameters are updated through their covariability with the observed 
variable, which can be computed directly from the ensemble. In particular, the 𝑖𝑖th ensemble 
member of unobserved variable or parameter 𝑥𝑥𝑖𝑖 is updated by 

𝑥𝑥𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 = 𝑥𝑥𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 +
𝜎𝜎 ��𝑥𝑥𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑛𝑛, �𝑜𝑜𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑛𝑛�

𝜎𝜎𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2 �𝑜𝑜𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 − 𝑜𝑜𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖 �. 

Here 𝑥𝑥𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖  and 𝑥𝑥𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖  are the posterior and prior of the unobserved variable or parameter for 
the 𝑖𝑖th ensemble member at time 𝑡𝑡; and 𝜎𝜎 ��𝑥𝑥𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑛𝑛, �𝑜𝑜𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑛𝑛� is the covariance between the 
prior of the unobserved variable or parameter �𝑥𝑥𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑛𝑛 and the prior of the observed variable 
�𝑜𝑜𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑛𝑛 at time 𝑡𝑡. In the EAKF, variables and parameters are updated deterministically so that 
the higher moments of the prior distribution are preserved in the posterior. 

In applying the EAKF, we used the daily number of reported cases in city 𝑙𝑙 on a given day 𝑡𝑡, 𝑦𝑦𝑙𝑙𝑡𝑡, 
as observations. For each 𝑦𝑦𝑙𝑙𝑡𝑡, we assume a heuristic observation error variance (OEV, denoted by 
𝜎𝜎𝑡𝑡,𝑙𝑙
2 ): 

𝜎𝜎𝑡𝑡,𝑙𝑙
2 = max�4,

(𝑦𝑦𝑙𝑙𝑡𝑡)2

4
�. 

Similar forms of OEV have been successfully used for inference and forecasting for a range of 
infectious diseases including influenza (20, 31), Ebola (32), West Nile virus (33) and respiratory 
syncytial virus (34). We did test an alternate Poisson OEV with form 𝜎𝜎𝑡𝑡,𝑙𝑙

2 = max(4,𝑦𝑦𝑙𝑙𝑡𝑡); the 
results remain similar (see Section 10 below for details).  

The IF-EAKF algorithm proceeds per the pseudo-code in Algorithm 1. 
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Algorithm 1. IF-EAKF 
Input: The metapopulation model ℳ, observations {𝑦𝑦𝑙𝑙𝑡𝑡} in 𝑇𝑇 days and 𝑀𝑀 locations, the 
observational error variance (OEV) {𝜎𝜎𝑡𝑡,𝑙𝑙

2 }, the initial system state 𝑥̅𝑥0, the initial 
covariance matrix 𝛴𝛴, a discount factor 𝑎𝑎 ∈ (0,1), and the number of iterations 𝐿𝐿. 
for 𝑙𝑙 = 1 to 𝐿𝐿 do 
    Generate an ensemble of system state with 𝑛𝑛 members using a multivariate Gaussian 
distribution: {𝑥𝑥�𝑙𝑙0}𝑛𝑛~𝒩𝒩� 𝑥̅𝑥𝑙𝑙−1, 𝑎𝑎2(𝑙𝑙−1)𝛴𝛴�. 
    for 𝑡𝑡 = 1 to 𝑇𝑇 do 
        Run model ℳ with posterior {𝑥𝑥�𝑙𝑙𝑡𝑡−1}𝑛𝑛 obtained from last update for one day, and 
return the ensemble of weekly incidence: {𝑜𝑜𝑙𝑙𝑡𝑡}𝑛𝑛 = ℳ({𝑥𝑥�𝑙𝑙𝑡𝑡−1}𝑛𝑛). 
        Update the prior distribution {𝑥𝑥𝑙𝑙𝑡𝑡}𝑛𝑛 ≡ {𝑥𝑥�𝑙𝑙𝑡𝑡−1}𝑛𝑛 to posterior {𝑥𝑥�𝑙𝑙𝑡𝑡}𝑛𝑛 using the EAKF: 
{𝑥𝑥�𝑙𝑙𝑡𝑡}𝑛𝑛 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸({𝑥𝑥𝑙𝑙𝑡𝑡}𝑛𝑛, {𝑦𝑦𝑙𝑙𝑡𝑡}, {𝑜𝑜𝑙𝑙𝑡𝑡}𝑛𝑛, {𝜎𝜎𝑡𝑡,𝑙𝑙

2 }). 
    end for 
    Calculate the ensemble mean of posterior over time as the input in next iteration: 𝑥̅𝑥𝑙𝑙 =
∑ 𝐸𝐸𝑛𝑛({𝑥𝑥�𝑙𝑙𝑡𝑡}𝑛𝑛)/𝑇𝑇𝑡𝑡 , where 𝐸𝐸𝑛𝑛 computes ensemble mean. 
end for 
Output: 𝑥̅𝑥𝐿𝐿 as the maximum likelihood estimate of the system state. 
 

In each iteration of the IF, the standard deviation of each parameter is shrunk by a factor 𝑎𝑎 ∈
(0,1). In practice, the discount factor 𝑎𝑎 can range between 0.9 and 0.99. If 𝑎𝑎 is too small, the 
algorithm may ‘quench’ too fast and fail to find the MLE; if it is too close to 1, the algorithm 
may not converge in a reasonable time interval. The number of iterations required for this 
convergence was determined by inspecting the evolution of posterior parameter distributions. In 
particular, the iteration time should be set to avoid divergence in the EAKF, in which the 
ensemble distribution collapses to a narrow range. In our implementation, we used 𝑛𝑛 = 300 
ensemble members, a shrinking parameter 𝑎𝑎 = 0.9 and an iteration number 𝐿𝐿 = 10. 

Algorithm 1 returns the MLEs for parameters. In different runs, the MLEs are slightly different 
due to the stochasticity in the model and the initialization of the inference algorithm. In this 
study, we ran 1,000 independent realizations to generate the average MLEs of inferred 
parameters and their corresponding 95% CIs.  

6. Calculation of 𝑹𝑹𝒆𝒆 in Wuhan city 

We calculated the reproductive number 𝑅𝑅𝑒𝑒 in Wuhan city using the inferred parameters. 
Specifically, 𝑅𝑅𝑒𝑒 is the largest eigenvalue of the next-generation matrix (NGM) (35, 36). Define 
𝑋𝑋 = [𝐸𝐸, 𝐼𝐼𝑟𝑟 , 𝐼𝐼𝑢𝑢]𝑇𝑇 and 𝑌𝑌 = [𝑆𝑆,𝑅𝑅]𝑇𝑇. The vectors for new infection and other rates are: 

ℱ = �

𝛽𝛽𝛽𝛽𝐼𝐼𝑟𝑟

𝑁𝑁
+
𝜇𝜇𝜇𝜇𝜇𝜇𝐼𝐼𝑢𝑢

𝑁𝑁
0
0

� ,𝒱𝒱 =

⎣
⎢
⎢
⎢
⎢
⎡

𝐸𝐸
𝑍𝑍

𝐼𝐼𝑟𝑟

𝐷𝐷
−
𝛼𝛼𝛼𝛼
𝑍𝑍

𝐼𝐼𝑢𝑢

𝐷𝐷
−

(1 − 𝛼𝛼)𝐸𝐸
𝑍𝑍 ⎦

⎥
⎥
⎥
⎥
⎤

. 
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The disease-free equilibrium is 𝑥𝑥0 = [0,0,0,𝑁𝑁, 0]𝑇𝑇. We then have 

𝐹𝐹 =
𝜕𝜕ℱ
𝑑𝑑𝑑𝑑

�
𝑥𝑥0

= �
0 𝛽𝛽 𝜇𝜇𝜇𝜇
0 0 0
0 0 0

� 

and 

𝑉𝑉 =
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑

�
𝑥𝑥0

=

⎝

⎜
⎜
⎛

1
𝑍𝑍

0 0

−
𝛼𝛼
𝑍𝑍

1
𝐷𝐷

0

−
1 − 𝛼𝛼
𝑍𝑍

0
1
𝐷𝐷⎠

⎟
⎟
⎞

. 

The NGM is 𝐾𝐾 = 𝐹𝐹𝑉𝑉−1. 𝑅𝑅𝑒𝑒 is then computed as the leading eigenvalue of the NGM 𝐾𝐾, i.e.,  

𝑅𝑅𝑒𝑒 = 𝛼𝛼𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝜇𝜇𝜇𝜇𝜇𝜇. 
Of note, at the beginning of the epidemic (e.g., before January 23, 2020), Re is equivalent to the 
basic reproductive number, R0.  As the epidemic unfolds, declines in population susceptibility 
reduce the effective reproductive number. However, here to assess the effectiveness of control 
measures, we used the same formula above for periods after January 23, 2020, without 
accounting for the relatively small decrease in population susceptibility due to infections during 
January 24 – February 8, 2020.     

7. Synthetic testing 
Before applying the model-inference framework to the observed COVID-19 incidence data, we 
tested the model-inference framework using model-generated outbreaks. Specifically, we 
generated a synthetic outbreak using a free simulation of the metapopulation model with a set of 
specified parameters. We then ran IF-EAKF inference using the daily cases for each city, as 
generated in stochastic free simulation, as observations. The aim is to determine whether the 
model-inference framework can ingest observations and recover the specified parameters. This 
assessment of the performance of the inference algorithm also allows inspection of the 
sensitivities of the inference results to model assumptions. 

7.1. Accuracy of parameter estimation 

We first generated a synthetic outbreak using the following parameter values: 𝛽𝛽 = 1.0, 𝜇𝜇 = 0.8, 
𝜃𝜃 = 1.4, 𝑍𝑍 = 4 days, 𝛼𝛼 = 0.1, 𝐷𝐷 = 4 days, 𝑇𝑇𝑑𝑑 = 6 days. For the IF, a 300-member ensemble 
was used. Priors of variables and parameters were drawn from the ranges reported in Section 1 
above using a Latin Hypercubic Sampling algorithm. We used 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 2,000 in Wuhan city 
to initiate the outbreak. During inference, the seeding parameter 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 was also set to 2,000.  
To account for stochastic effects, we applied the IF-EAKF inference algorithm 300 times and 
report the distributions of estimated parameters. All parameters were accurately estimated (Fig. 
S4) and the effective reproductive number 𝑅𝑅𝑒𝑒 was recovered (Fig. S5). After each iteration, the 
variances of estimated parameters were reduced, and mean estimates converged to stable values 
(Fig. S6). 

To further validate the inference approach, we also tested the system on another synthetic 
outbreak generated with a lower 𝑅𝑅𝑒𝑒 (𝛽𝛽 = 1.0, 𝜇𝜇 = 0.6, 𝜃𝜃 = 1.4, 𝑍𝑍 = 4 days, 𝛼𝛼 = 0.2, 𝐷𝐷 = 4 
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days, 𝑇𝑇𝑑𝑑 = 6 days). Again, epidemiological parameters and 𝑅𝑅𝑒𝑒 were captured by the estimated 
distributions (see Figs. S7-8). 

Two additional synthetic outbreak were also tested: the first with a higher reporting rate (𝛼𝛼 = 0.5, 
𝛽𝛽 = 1.0, 𝜇𝜇 = 0.6, 𝜃𝜃 = 1.4, 𝑍𝑍 = 4 days, 𝛼𝛼 = 0.5, 𝐷𝐷 = 4 days, 𝑇𝑇𝑑𝑑 = 6 days); the second with a 
still higher reporting rate and low transmission reduction factor for undocumented infections 
(𝛼𝛼 = 0.7, 𝛽𝛽 = 1.0, 𝜇𝜇 = 0.3, 𝜃𝜃 = 1.4, 𝑍𝑍 = 4 days, 𝛼𝛼 = 0.5, 𝐷𝐷 = 4 days, 𝑇𝑇𝑑𝑑 = 6 days).  As 
shown in Figs. S9-12, these parameter combinations were also accurately estimated.   

Together, the synthetic testing indicates that all metapopulation model parameters are 
identifiable, including both 𝛼𝛼 and 𝜇𝜇, which are the core focus of this study. In particular, we note 
the parameters are well estimated for outbreaks generated with a high transmission reduction 
factor for undocumented infections and a low fraction of documented infections (i.e. 𝜇𝜇 = 0.8 and 
𝛼𝛼 = 0.1, Figs. S4-5) and a low transmission reduction factor for undocumented infections and a 
high fraction of documented infections (i.e. 𝜇𝜇 = 0.3 and 𝛼𝛼 = 0.7, Figs. S11-12). 

7.2. Sensitivity of parameter estimation to seeding 

As the numbers of exposed (𝐸𝐸) and undocumented infected (𝐼𝐼𝑢𝑢) individuals are unobserved, we 
estimated these state variables along with the other parameters/variables using the IF-EAKF 
approach. In particular, 𝐸𝐸 and 𝐼𝐼𝑢𝑢 may be sensitive to the imposed range of initial seeding 
(𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚). We examined the sensitivity of the overall parameter estimation to the seeding 
parameter 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚. To do this, we repeated the inference shown in Figs. S4-5 using a higher 
seeding parameter 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 3,000 (the true 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is 2,000). As shown in Figs. S13-14, 
with a mis-specified, higher prior for 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚, the estimation biases remain limited and 
unchanged, and 𝑅𝑅𝑒𝑒 is identified.  

7.3. System identifiability 
Identification of model parameters is the central aim of this work. Our contention is that the 
assimilation and use of multiple streams of data from different cities, along with the movement 
data, enables parameter estimation.  
 
To demonstrate that the utilization of multiple data streams in the inference system improves 
model parameter identifiability, we performed synthetic tests using four additional transmission 
models: 1) a reduction of the metapopulation model to a single location, i, i.e. 
 

dSi
dt

= −βSiIi
r

Ni
− µβSiIi

u

Ni
   

dEi
dt

= βSiIi
r

Ni
+ µβSiIi

u

Ni
− Ei

Z
  

dIi
r

dt
= α Ei

Z
− Ii

r

Dr
    

dIi
u

dt
= (1 − α) Ei

Z
− Ii

u

Du
   

 
2) the metapopulation model representing only two cities (Wuhan and Xiaogan); 3) the 
metapopulation model representing only ten cities (Wuhan, Yichang, Xiangyang, Jinmen, 
Xiaogan, Huanggang, Xianning, Suizhou and Enshi), and 4) the metapopulation model 
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representing 50 cities. The distributions of estimated parameters and the actual parameters used 
to generate synthetic outbreaks are shown in Figs. S15. Several parameters in the single location 
model are not well identified, in particular the relative transmissibility 𝜇𝜇, and the mean infection 
period, D; however, as more data streams and mobility data are used to constrain the system, 
parameter posterior credible intervals capture the truth. These simulation findings indicate that 
accurate constraint of system parameters is supported by the assimilation of observational data 
streams from multiple locations (375 cities in the full model, Figs. S4-14). 
 
To demonstrate the importance of the Tencent mobility data and geographic interconnectedness 
for parameter estimation, we performed additional synthetic testing using the ten-city model. 
Specifically, we generated a synthetic outbreak using the metapopulation model with inter-city 
movement, but shut down this inter-city mobility during inference. The distributions of estimated 
parameters for this experiment are shown in Fig. S16. Without inter-city connectedness, the 
model parameters cannot be accurately estimated.  Together, the results presented in Figs. S15-
S16 indicate that the assimilation of data from multiple cities and the inclusion of movement 
information support constraint of all 6 model parameters, including the fraction of documented 
infections, 𝛼𝛼, and the relative transmissibility 𝜇𝜇. 

8. Inference using documented cases 
We used the reported cases from 375 Chinese cities during January 10, 2020 to January 23, 2020 
to infer model parameters. In total, 801 cases were reported, with 454 cases in Wuhan city. 

We tested a range of reporting delays (𝑇𝑇𝑑𝑑 = 6, 7, 8, 9 and 10 days). For each combination of 
seeding and reporting delay parameters, we ran the inference 300 times. To validate the estimates, 
we generated 2000 outbreaks using the inferred mean parameters with seeding randomly drawn 
from a uniform distribution 𝑈𝑈[0, 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 2,000], and then compared the distributions of 
simulated new cases in all cities with reported case observations. The goodness-of-fit was 
measured using log-likelihood (LL). The log-likelihood is computed using the posterior 
distribution of confirmed cases in each city. For each observation, we calculate the logarithmic 
value of the weight assigned to a +/-15% interval around the reported incidence (+/- 10%, 15% 
and 20% were also tested, and the results remained the same). We set the minimum logarithmic 
value as -20. LL is the sum of these values. Inference results for the best-fitting model with the 
maximum LL (𝑇𝑇𝑑𝑑 = 9 days) are shown in Table 1 of the main text, and model fitting for this 
inference solution is shown in Fig. 1 of the main text. 

9. Spatial movement of COVID-19 in China 

Using the best-fitting model (𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 2,000, 𝑇𝑇𝑑𝑑 = 9 days), we generated 300 simulated 
outbreaks starting January 10th until January 23rd. We computed the daily number of cities with 
cumulative incidence ≥ 10 and compared these distributions with the reported numbers of 
invaded cities during the same period (Fig. S17). The observations and simulations are in good 
agreement. In particular, major cities outside epicenter and connected to Wuhan, specifically, 
Huanggang, Beijing, Shenzhen, Shanghai, Xiaogan and Chongqing, reached 10 cumulative cases 
on January 20, 21, 21, 22, 23, 23, respectively. In our simulated outbreaks (2000 free simulations 
using inferred parameters), Beijing, Xiaogan, Huanggang, Chongqing and Jinmen reached 10 
cumulative cases on January 21, 22, 22, 22, and 23, respectively. 
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We also generated simulations with the best-fitting parameter estimates but using re-wired 
outflows from each city to other randomly selected cities (i.e. a scrambled mobility matrix). This 
disruption of the mobility matrix greatly altered the cities with cumulative incidence ≥10 before 
January 23. For instance, in one realization, Tonghua, Jieyang, Yutian and Shenyang reached 10 
cumulative cases on Jan 22, 22, 22, and 23, respectively. This result is completely distinct from 
the observed spatial spread pattern. 
 

10. Sensitivity of parameter estimates and identifiability 

Distributions for estimated parameters and 𝑅𝑅𝑒𝑒 for different settings of 𝑇𝑇𝑑𝑑 (𝑇𝑇𝑑𝑑 = 6, 7, 8, 9, 10) and 
𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 (𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 1500, 2500) are shown in Fig. S18 and Fig. S19. Estimations of 𝛽𝛽, 𝜇𝜇, 𝜃𝜃, 
𝑍𝑍 and 𝐷𝐷 are robust to different settings of 𝑇𝑇𝑑𝑑 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚. The relative insensitivity to the value 
𝑇𝑇𝑑𝑑  suggests that as long as a random Gamma distributed reporting delay of sufficient mean 
length is imposed, the parameters can be identified based on the growth and intercity spread of 
confirmed cases. The insensitivity to 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is likely due to two factors: 1) initial infections 
are drawn uniformly from zero to 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚, not at 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚x; and 2) the EAKF, by continually 
adjusting state variable estimates with each assimilation of data (i.e. observed confirmed cases), 
can quickly adjust spuriously high or low initial state values to more realistic levels.   

To test the sensitivity of parameter estimates to the assumed OEV form, we performed another 
inference using a Poisson OEV, specifically, 𝜎𝜎𝑡𝑡,𝑙𝑙

2 = max(4,𝑦𝑦𝑙𝑙𝑡𝑡). Estimation was robust to this 
OEV form (Fig. S20). 

We further tested the sensitivity of the parameter estimates to the form of the prior distributions. 
In particular, instead of generating the initial priors using Latin hypercube sampling from 
uniform distributions, we used normal distributions with means set as the midpoint of the 
uniform prior ranges and standard deviations set to 30% of those respective mean values. The 
inference results remain similar (Fig. S21). Again, this robustness may be partly due to the 
capability of the EAKF to migrate posterior distributions toward true parameter values. 

We also ran inference assuming that there was an additional reporting delay before January 17. 
Specifically, for documented infections occurring before January 17, 2020, we added two days to 
the randomly generated Gamma reporting delay. The results in Fig. S22 indicate that this 
additional delay does not affect the inference findings. 

To further explore the identifiability of 𝛼𝛼 and 𝜇𝜇, we examined how marginal variations of these 
two parameters affect 𝑅𝑅𝑒𝑒 (Fig. 1E). An increase of either parameter leads to a monotonic 
increase of 𝑅𝑅𝑒𝑒 and the accumulation of more reported cases; however, 𝑅𝑅𝑒𝑒 is more sensitive to 
changes to 𝜇𝜇, the relative contagiousness of undocumented infections. Because multiple 
combinations of 𝛼𝛼 and 𝜇𝜇 produce the same estimate for 𝑅𝑅𝑒𝑒, we also tested whether the 
combination identified by our model-inference framework (i.e. 𝛼𝛼 = 0.14, 𝜇𝜇 = 0.55) is 
maximally likely. Indeed, this identified combination has the highest log-likelihood (Fig. 1F), 
indicating that the framework, given the abundance of observations (daily data from 375 cities), 
is able to discriminate among combinations of 𝛼𝛼 and 𝜇𝜇. 
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Lastly, to test whether the estimates for 𝛼𝛼,𝛽𝛽, 𝜇𝜇,𝑍𝑍, and 𝜃𝜃 were sensitive to the use of a single 
average infection period, D, we fit the daily incidence data in 375 cities during January 10-23 to 
a metapopulation model in which documented and undocumented infections had separate 
average infection periods (denoted by 𝐷𝐷𝑟𝑟 and 𝐷𝐷𝑢𝑢). Here the model is: 
 

𝑑𝑑𝑆𝑆𝑖𝑖
𝑑𝑑𝑑𝑑

= −𝛽𝛽𝑆𝑆𝑖𝑖𝐼𝐼𝑖𝑖
𝑟𝑟

𝑁𝑁𝑖𝑖
− 𝜇𝜇𝜇𝜇𝑆𝑆𝑖𝑖𝐼𝐼𝑖𝑖

𝑢𝑢

𝑁𝑁𝑖𝑖
+ 𝜃𝜃 ∑ 𝑀𝑀𝑖𝑖𝑖𝑖𝑆𝑆𝑗𝑗

𝑁𝑁𝑗𝑗−𝐼𝐼𝑗𝑗
𝑟𝑟𝑗𝑗 − 𝜃𝜃 ∑ 𝑀𝑀𝑗𝑗𝑗𝑗𝑆𝑆𝑖𝑖

𝑁𝑁𝑖𝑖−𝐼𝐼𝑖𝑖
𝑟𝑟𝑗𝑗    

𝑑𝑑𝐸𝐸𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑆𝑆𝑖𝑖𝐼𝐼𝑖𝑖
𝑟𝑟

𝑁𝑁𝑖𝑖
+ 𝜇𝜇𝜇𝜇𝑆𝑆𝑖𝑖𝐼𝐼𝑖𝑖

𝑢𝑢

𝑁𝑁𝑖𝑖
− 𝐸𝐸𝑖𝑖

𝑍𝑍
+ 𝜃𝜃 ∑ 𝑀𝑀𝑖𝑖𝑖𝑖𝐸𝐸𝑗𝑗

𝑁𝑁𝑗𝑗−𝐼𝐼𝑗𝑗
𝑟𝑟𝑗𝑗 − 𝜃𝜃 ∑ 𝑀𝑀𝑗𝑗𝑗𝑗𝐸𝐸𝑖𝑖

𝑁𝑁𝑖𝑖−𝐼𝐼𝑖𝑖
𝑟𝑟𝑗𝑗    

𝑑𝑑𝐼𝐼𝑖𝑖
𝑟𝑟

𝑑𝑑𝑑𝑑
= 𝛼𝛼 𝐸𝐸𝑖𝑖

𝑍𝑍
− 𝐼𝐼𝑖𝑖

𝑟𝑟

𝐷𝐷𝑟𝑟
       

𝑑𝑑𝐼𝐼𝑖𝑖
𝑢𝑢

𝑑𝑑𝑑𝑑
= (1 − 𝛼𝛼) 𝐸𝐸𝑖𝑖

𝑍𝑍
− 𝐼𝐼𝑖𝑖

𝑢𝑢

𝐷𝐷𝑢𝑢
+ 𝜃𝜃 ∑

𝑀𝑀𝑖𝑖𝑖𝑖𝐼𝐼𝑗𝑗
𝑢𝑢

𝑁𝑁𝑗𝑗−𝐼𝐼𝑗𝑗
𝑟𝑟𝑗𝑗 − 𝜃𝜃 ∑ 𝑀𝑀𝑗𝑗𝑗𝑗𝐼𝐼𝑖𝑖

𝑢𝑢

𝑁𝑁𝑖𝑖−𝐼𝐼𝑖𝑖
𝑟𝑟𝑗𝑗    

𝑁𝑁𝑖𝑖 = 𝑁𝑁𝑖𝑖 + 𝜃𝜃 ∑ 𝑀𝑀𝑖𝑖𝑖𝑖𝑗𝑗 − 𝜃𝜃 ∑ 𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗      

The best-fit model posterior estimates of key epidemiological parameters are reported in Table 
S1 and are similar with those obtained using the model presented in the main text (Table 1).  
Further, the estimates for 𝐷𝐷𝑟𝑟 and 𝐷𝐷𝑢𝑢 are similar to D.   

11. Inference of model parameters after January 23, 2020 

We modeled the transmission of SARS-CoV2 in China after implementation of control measures 
on January 23. These control measures included: travel restrictions imposed between major cities 
and Wuhan; self-quarantine and contact precautions advocated by the government; and more 
available rapid testing for infection confirmation (11-12). These control measures along with 
changes in care-seeking behavior due to increased awareness of the virus and increased personal 
protection behavior (e.g. wearing of facemasks, self-isolation when sick), likely altered the 
epidemiological characteristics of the outbreak after January 23. To quantify these differences, 
we re-estimated the system parameters using the metapopulation model-inference framework and 
city-level daily cases reported between January 24 and February 8. As the compliance of the 
inter-city travel restriction is unknown, we tested the following two scenarios: 

1) Travel from and to Wuhan are reduced by 98%, and other inter-city travel is reduced 
by 80%. 

2) All inter-city mobility is shut down. 

The first scenario is informed by the reductions observed in the Baidu Mobility Index (Table S2). 
In addition, to represent reduced person-to-person contact and increased infection detection, we 
updated the initial priors for 𝛽𝛽 to [0.2, 1.2] for both extreme scenarios. We also tested a range of 
reporting delays, 𝑇𝑇𝑑𝑑, from 6 days to 10 days. As before, we used the daily reported cases in all 
cities to compute the log-likelihood.  

In order to reflect the rapid change in control efforts, we inferred model parameters during two 
overlapping periods: January 24 to February 3 and January 24 to February 8. For these periods, 
the best-fitting models are shown in Figs. S23-S26. Estimated parameters, 𝑅𝑅𝑒𝑒 and goodness-of-
fit are reported in Table 2 of the main text and Table S3. 
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12. Independent model validation using infection rates among evacuees to other countries 

A recent study (37) summarized infection rates in evacuees to Singapore, South Korea, Japan 
and Germany at the end of January. The average infection rate was reported as 1.39%. Based on 
this estimate, we performed two independent tests to corroborate the parameters inferred by the 
metapopulation model. 

1). According to official report, around 5 million people left Wuhan city before January 23. The 
total population in Wuhan city after January 23 (when travel restrictions were imposed) is 
therefore around 6 million. A 1.39% infection rate suggests an estimated 83,400 infections prior 
to February 1 in Wuhan. Simulation with the metapopulation model using inferred parameters 
produces a total infected population of 48,420 (95% CI [10,849, 89,524]) before Feb 1, which in 
general matches the estimated 83,400 infections in magnitude. 

2). In our model, infections occurring prior to February 1 will be documented with a reporting 
delay (as inferred, an average of 9 days before January 23 and 6 days after January 23). For 
simplicity, we assume the reporting delay for each person is constant. Based on this assumption, 
infections before February 1 should continue appearing until February 7. The cumulative 
confirmed cases for February 7 in Wuhan is 13,562, which suggests a reported infection rate of 
13,562/6 millions = 0.22%. Compared with the infection rate 1.39% (37), the reporting rate in 
Wuhan should be 0.22%/1.39%=15.8%. This estimate generally agrees with our inferred 
reporting rate of 14% before January 23. 
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Fig. S1. Cumulative cases in 375 Chinese cities on January 23, 2020. Wuhan city had 454 cases. 
White circles indicate zero reported cases. 
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Fig. S2. Distribution of interval between onset of symptoms and confirmation (days) for cases 
confirmed before (left) and after (right) January 23, 2020 (17). The data prior to January 23 were 
better fitted with a Gamma distribution (𝒂𝒂 = 𝟏𝟏.𝟖𝟖𝟖𝟖,𝒃𝒃 = 𝟑𝟑.𝟓𝟓𝟓𝟓,𝑳𝑳𝑳𝑳 = −𝟐𝟐𝟐𝟐𝟐𝟐.𝟐𝟐𝟐𝟐) than a Weibull 
distribution (𝑨𝑨 = 𝟕𝟕.𝟐𝟐𝟐𝟐,𝑩𝑩 = 𝟏𝟏.𝟒𝟒𝟒𝟒,𝑳𝑳𝑳𝑳 = −𝟐𝟐𝟐𝟐𝟐𝟐.𝟏𝟏𝟏𝟏). After January 23, the data were better 
fitted with a Gamma distribution (𝒂𝒂 = 𝟐𝟐.𝟐𝟐𝟐𝟐,𝒃𝒃 = 𝟐𝟐.𝟓𝟓𝟓𝟓,𝑳𝑳𝑳𝑳 = −𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟗𝟗𝟗𝟗) than a Weibull 
distribution (𝑨𝑨 = 𝟔𝟔.𝟕𝟕𝟕𝟕,𝑩𝑩 = 𝟏𝟏.𝟔𝟔𝟔𝟔,𝑳𝑳𝑳𝑳 = −𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟑𝟑𝟑𝟑).  
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Fig. S3. Fitting the Tencent mobility data to gravity models with power-law, exponential and 
truncated power-law deterrence functions. The red line shows 𝒚𝒚 = 𝒙𝒙. 
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Fig. S4. Accuracy of parameter estimation. The actual parameters used in generating the 
synthetic outbreak are depicted by vertical red lines. Blue bars represent the distribution of the 
posterior parameter estimates. The ranges of the x-axis are set as the initial prior parameter 
ranges. 
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Fig. S5. Comparison of the actual 𝑅𝑅𝑒𝑒 (vertical red line) and the distribution of estimated 𝑅𝑅𝑒𝑒 (blue 
bars) for the fittings shown in Figure S3. 
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Fig. S6. Distributions of posterior estimates for all parameters at the beginning of each iteration 
(L = 10). The variance of the posterior estimates decreases, and the mean estimates converge to 
stable values. 
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Fig. S7. Accuracy of parameter estimation. The actual parameters used in generating the 
synthetic outbreak are depicted by vertical red lines. Blue bars represent the distribution of the 
posterior parameter estimates. The ranges of the x-axis are set as the initial prior parameter 
ranges. 
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Fig. S8. Comparison of the actual 𝑹𝑹𝒆𝒆 (vertical red line) and the distribution of estimated 𝑹𝑹𝒆𝒆 (blue 
bars) for the fittings shown in Figure S6. 
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Fig. S9. Accuracy of parameter estimation. The actual parameters used in generating the 
synthetic outbreak are depicted by vertical red lines. Blue bars represent the distribution of the 
posterior parameter estimates. The ranges of the x-axis are set as the initial prior parameter 
ranges. 
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Fig. S10. Comparison of the actual 𝑅𝑅𝑒𝑒 (vertical red line) and the distribution of estimated 𝑅𝑅𝑒𝑒 
(blue bars) for the fittings shown in Figure S8. 

.  
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Fig. S11. Accuracy of parameter estimation for a truth with a high fraction of documented 
infections (𝜶𝜶 = 𝟎𝟎.𝟕𝟕) and low relative contagiousness of undocumented infections (𝝁𝝁 = 𝟎𝟎.𝟑𝟑). 
The actual parameters used in generating the synthetic outbreak are depicted by vertical red lines. 
Blue bars represent the distribution of the posterior parameter estimates. The ranges of the x-axis 
are set as the initial prior parameter ranges. 
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Fig. S12. Comparison of the actual 𝑹𝑹𝒆𝒆 (vertical red line) and the distribution of estimated 𝑹𝑹𝒆𝒆 
(blue bars) for a truth with a high fraction of documented infections (𝜶𝜶 = 𝟎𝟎.𝟕𝟕) and low relative 
contagiousness of undocumented infections (𝝁𝝁 = 𝟎𝟎.𝟑𝟑) (individual parameter estimates shown in 
Figure S10).  
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Fig. S13. Accuracy of parameter estimation. The actual parameters used in generating the 
synthetic outbreak are depicted by vertical red lines. Blue bars represent the distribution of the 
posterior parameter estimates. The ranges of the x-axis are set as the initial prior parameter 
ranges. The actual seeding parameter for the synthetic outbreak is 𝑺𝑺𝑺𝑺𝑺𝑺𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟐𝟐,𝟎𝟎𝟎𝟎𝟎𝟎, while 
𝑺𝑺𝑺𝑺𝑺𝑺𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎 was set to 3,000 during inference. 
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Fig. S14. Comparison of the actual 𝑹𝑹𝒆𝒆 (vertical red line) and the distribution of estimated 𝑹𝑹𝒆𝒆 
(blue bars) for the fittings shown in Figure S12.  The actual seeding parameter for the synthetic 
outbreak is 𝑺𝑺𝑺𝑺𝑺𝑺𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟐𝟐,𝟎𝟎𝟎𝟎𝟎𝟎, while 𝑺𝑺𝑺𝑺𝑺𝑺𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎 was set to 3,000 during inference. 
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Fig. S15. Accuracy of parameter estimation. Estimation of system parameters using a single-
location reduction of the metapopulation model and the metapopulation model implemented for 
2, 10, 50 and 375 cities. The actual parameters used in generating the synthetic outbreak are 
depicted by horizontal red lines. Blue bars represent the distribution of the posterior parameter 
estimates.  
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Fig. S16. Accuracy of parameter estimation. Estimation of system parameters using a 
metapopulation model consisting of ten cities: Wuhan, Yichang, Xiangyang, Jinmen, Xiaogan, 
Huanggang, Xianning, Suizhou and Enshi. Here, inter-city travel was shut down during inference. 
The actual parameters used in generating the synthetic outbreak are depicted by vertical red lines. 
Blue bars represent the distribution of the posterior parameter estimates. The ranges of the x-axis 
are set as the initial prior parameter ranges. 
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Fig. S17. Model-generated distributions of the number of cities with cumulative incidence ≥ 10 
at each day from January 10 to January 23. Red crosses are reported numbers until January 23.  
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Fig. S18. Distributions of estimated parameters for different settings of 𝑻𝑻𝒅𝒅. Boxes show median 
and interquartile values and whiskers indicate the 95% CIs. 
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Fig. S19. Distributions of estimated parameters for different settings of 𝑺𝑺𝑺𝑺𝑺𝑺𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎. Boxes show 
median and interquartile values and whiskers indicate the 95% CIs. Red: 𝑺𝑺𝑺𝑺𝑺𝑺𝒅𝒅𝒎𝒎𝒎𝒎𝒙𝒙 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏, 
blue: 𝑺𝑺𝑺𝑺𝑺𝑺𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐, yellow: 𝑺𝑺𝑺𝑺𝑺𝑺𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐. We set 𝑻𝑻𝒅𝒅 = 𝟗𝟗 days for all three inferences. 
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Fig. S20. Distributions of estimated parameters for different settings of OEV. Boxes show 
median and interquartile values and whiskers indicate the 95% CIs. Red: Poisson OEV 𝝈𝝈𝒕𝒕,𝒍𝒍𝟐𝟐 =
𝐦𝐦𝐦𝐦𝐦𝐦(𝟒𝟒,𝒚𝒚𝒍𝒍𝒕𝒕), blue: 𝝈𝝈𝒕𝒕,𝒍𝒍𝟐𝟐 = 𝐦𝐦𝐦𝐦𝐦𝐦(𝟒𝟒, (𝒚𝒚𝒍𝒍𝒕𝒕)𝟐𝟐/𝟒𝟒). We set 𝑺𝑺𝑺𝑺𝑺𝑺𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 and 𝑻𝑻𝒅𝒅 = 𝟗𝟗 days for both 
inferences. 
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Fig. S21. Distributions of estimated parameters for different forms of prior. Boxes show median 
and interquartile values and whiskers indicate the 95% CIs. Red: Normal prior distribution with 
30% standard deviations of mean values, blue: prior sampled using LHS. We set 𝑺𝑺𝑺𝑺𝑺𝑺𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎 =
𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 and 𝑻𝑻𝒅𝒅 = 𝟗𝟗 days for both inferences. 
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Fig. S22. Distributions of estimated parameters. Boxes show median and interquartile values and 
whiskers indicate the 95% CIs. Red: two-day additional reporting delay for infections occurred 
before January 23, blue: a same Gamma-distributed reporting delay across the two-week period. 
We set 𝑺𝑺𝑺𝑺𝑺𝑺𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 and 𝑻𝑻𝒅𝒅 = 𝟗𝟗 days for both inferences.  
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Fig. S23. Model fitting (𝑻𝑻𝒅𝒅 = 𝟔𝟔 days) to documented cases in Wuhan through February 3, 2020 
with no travel between cities (left). The distribution of estimated 𝑹𝑹𝒆𝒆 is shown in the right panel. 
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Fig. S24. Model fitting (𝑻𝑻𝒅𝒅 = 𝟔𝟔 days) to documented cases in Wuhan through February 3, 2020 
(left). Travel to and from Wuhan is reduced by 98%, and other inter-city travel is reduced by 
80%. The distribution of estimated 𝑹𝑹𝒆𝒆 is shown in the right panel. 
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Fig. S25. Model fitting (𝑻𝑻𝒅𝒅 = 𝟔𝟔 days) to documented cases in Wuhan through February 8, 2020 
with no travel between cities (left). The distribution of estimated 𝑹𝑹𝒆𝒆 is shown in the right panel. 
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Fig. S26. Model fitting (𝑻𝑻𝒅𝒅 = 𝟔𝟔 days) to documented cases in Wuhan through February 8, 2020 
(left). Travel to and from Wuhan is reduced by 98%, and other inter-city travel is ae reduced by 
80%. The distribution of estimated 𝑹𝑹𝒆𝒆 is shown in the right panel. 
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Table S1. Best-fit model posterior estimates of key epidemiological parameters for simulation 
during January 10-23, 2020 with the metapopulation model adjusted to include separate mean 
infectious periods for documented and undocumented infections (𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 2000, 𝑇𝑇𝑑𝑑 = 9 
days). 

Parameter Median (95% CIs) 

Transmission rate (β, days-1) 1.12 (1.07, 1.17) 

Relative transmission rate (µ) 0.55 (0.49, 0.60) 

Latency period (Z, days) 3.68 (3.48, 3.90)  

Infectious period for documented 
infections (Dr, days) 3.47 (3.26, 3.67) 

Infectious period for undocumented 
infections (Du, days) 3.45 (3.24, 3.70) 

Reporting rate (α) 0.14 (0.10, 0.17) 

Basic reproductive number (Re) 2.38 (2.16, 2.59) 

Mobility factor (θ) 1.36 (1.31, 1.42) 

 
 
Table S2. Baidu Mobility Index travel to and from Wuhan during January 23 – February 8, 
2020.  

 

 
 
  

Date Jan 
23 24 25 26 27 28 29 30 31 Feb 

1 2 3 4 5 6 7 8 

To Wuhan 1.75 0.88 0.63 0.51 0.42 0.41 0.37 0.35 0.33 0.36 0.39 0.40 0.41 0.37 0.37 0.36 0.34 

From Wuhan 11.14 3.89 1.30 0.66 0.43 0.32 0.26 0.24 0.24 0.24 0.46 0.21 0.23 0.28 0.28 0.27 0.28 
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Table S3. Best-fit model posterior estimates of key epidemiological parameters for simulation of 
the model with no travel between cities during January 24 – February 3 and January 24 – 
February 8 (𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 2000 on January 10, 𝑇𝑇𝑑𝑑 = 9 days before January 24, 𝑇𝑇𝑑𝑑 = 6 days 
between January 24 and February 8). 

 

Parameter 
January 24 – February 3 

(Median (95% CIs)) 

January 24 - February 8 

(Median (95% CIs)) 

Transmission rate (β, days-1) 0.51 (0.37, 0.68) 0.35 (0.30, 0.52) 

Relative transmission rate (µ) 0.47 (0.36, 0.64) 0.42 (0.34, 0.61) 

Latency period (Z, days) 3.62 (3.44, 3.87) 3.43 (3.30, 3.63) 

Infectious period (D, days) 3.15 (2.62, 3.71) 3.32 (2.92, 4.04) 

Reporting rate (α) 0.65 (0.60, 0.69) 0.69 (0.66, 0.71) 

Effective reproductive number (Re) 1.32 (1.07, 1.54) 0.96 (0.83, 1.16) 
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Data S1. (separate file) File (DataS1.zip) includes: 
Data.zip:   

Daily incidence by city, intercity movement, city coordinates, city populations 
(Incidence.csv; Mobility.csv; city_coordinates.csv; pop.csv) 

 
Code.zip: 
  Matlab code and input files for running model-inference system (M.mat; SEIR.m; 

cities.mat; incidence.mat; inference.m initialize.m; pop.mat) 
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