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Abstract

Although many computer programs can perform population genetics calculations, they are typically limited in the
analyses and data input formats they offer; few applications can process the large data sets produced by whole-
genome resequencing projects. Furthermore, there is no coherent framework for the easy integration of new statistics
into existing pipelines, hindering the development and application of new population genetics and genomics approaches.
Here, we present PopGenome, a population genomics package for the R software environment (a de facto standard for
statistical analyses). PopGenome can efficiently process genome-scale data as well as large sets of individual loci. It reads
DNA alignments and single-nucleotide polymorphism (SNP) data sets in most common formats, including those used by
the HapMap, 1000 human genomes, and 1001 Arabidopsis genomes projects. PopGenome also reads associated anno-
tation files in GFF format, enabling users to easily define regions or classify SNPs based on their annotation; all analyses
can also be applied to sliding windows. PopGenome offers a wide range of diverse population genetics analyses, including
neutrality tests as well as statistics for population differentiation, linkage disequilibrium, and recombination. PopGenome
is linked to Hudson’s MS and Ewing’s MSMS programs to assess statistical significance based on coalescent simulations.
PopGenome’s integration in R facilitates effortless and reproducible downstream analyses as well as the production of
publication-quality graphics. Developers can easily incorporate new analyses methods into the PopGenome framework.
PopGenome and R are freely available from CRAN (http://cran.r-project.org/) for all major operating systems under the
GNU General Public License.
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Introduction
Recent sequencing technologies allow to map genetic varia-
tion across hundreds of individual genomes (Harrison 2012);
notable examples are the 1000 genomes project in humans
(1000genomes.org) and the 1001 genomes project in
Arabidopsis thaliana (1001genomes.org). These technological
developments have shifted the bottleneck in population ge-
netics from data acquisition to data analysis.

Different software packages for population genetics (or
population genomics) analyses typically have limited overlap
in implemented statistics and accepted input formats. This
diversity hampers both efficient data analysis and the quick
dispersion of new statistical approaches. Many widely used
software packages, such as DnaSP (Rozas et al. 2003), cannot
handle the data formats developed for massive resequencing
projects. Only few programs support the use of genomic
annotation, and thus users interested in specific regions
have to preprocess the data using other tools.

To address these issues, a new software tool for population
genomic data analysis should:

� read data in a variety of input formats, including both
traditional formats and those used by the major rese-
quencing projects;

� implement a comprehensive range of population genetics/
genomics analyses and statistics;
� read associated annotation files and allow to systematically

select regions of interest;
� be able to analyze individual loci, multiple loci, and sliding

windows;
� be open source and be easily extendable by the scientific

community to incorporate new types of analyses;
� be integrated with powerful numerical and graphical ca-

pabilities; and
� be platform independent.

We implemented these features in PopGenome, a package
embedded in the freely available, platform-independent, sta-
tistical, and graphical computing environment R (http://cran.
r-project.org/, last accessed April 30, 2014).

Description of PopGenome

Summary

To fully exploit the capabilities of the R statistical and graph-
ical environment, and to allow the creation of stable work-
flows (scripts), all processes in PopGenome are executed
as command line functions. However, we anticipate that a
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graphical user interface implementing the most important
functionalities will be available in the near future.

PopGenome is designed to facilitate the easy integration of
virtually all major types of population genetics and popula-
tion genomics analyses, and, as outlined below, its current
version includes a large array of different statistics (see over-
view in table 2). The emphasis on extensibility was inspired by
the way Bioconductor (bioconductor.org) has come to dom-
inate the analysis of microarray data, where newly developed
methods for specific tasks are easily integrated into a pre-
existing larger framework, thereby obviating the need to
recreate tasks shared with existing analysis pipelines. We
hope that PopGenome may become the kernel of a similar
paradigm in the analysis of population genomics data, en-
abling researchers to effortlessly implement and share new or
modified statistics.

That PopGenome is embedded within the R framework
not only facilitates the easy integration of extensions and
stable workflows but also allows immediate and effortless
postprocessing of analysis results with R’s powerful numerical
and graphical capabilities.

Data Organization

PopGenome can read data both as full alignments and in sin-
gle-nucleotide polymorphism (SNP) formats such as those
generated by large resequencing projects. PopGenome’s abil-
ity to simultaneously manage large numbers of loci, which
allows for variation in sequence and population coverage,
provides a convenient framework for multilocus analyses.

After reading data, PopGenome first converts it into a
biallelic matrix, that is, a matrix whose rows correspond to
sequences and whose columns correspond to SNP positions
in the alignment. Entries are either 0, indicating the major
allele, or 1, indicating the minor allele (with entries corre-
sponding to unknown variants labeled NA). In PopGenome,
this matrix is stored as part of a GENOME object, which con-
tains additional data needed for downstream analyses; this
includes information on missing data, as well as annotations
for individual SNPs (e.g., if these are transitions/transversions,
coding/noncoding, or synonymous/nonsynonymous in the
case of coding sequences).

Large input files are split automatically into smaller chunks,
with the resulting partial biallelic matrices stored on the hard
disk. For this temporary storage, we use ff objects (Adler et al.
2013). These data structures are stored on disk but behave
(almost) as if they were in RAM, by transparently mapping
only a section (pagesize) in main memory. An ff object needs

about 3 kB of RAM to store SNP data from 1 million SNPs
across 50 individuals. When analyzing larger data sets,
PopGenome concatenates the partial biallelic matrices into
a single temporary file.

This strategy allows to simultaneously process whole-
chromosome or whole-genome SNP data from hundreds
of individuals, as collected in the 1000 human genomes
(1000genomes.org) and 1001 Arabidopsis genomes
(1001genomes.org) projects. To further speed up the reading
process, we employ the R-package parallel (Vera et al. 2008)
that facilitates parallel computations on computers with
multiple cores/CPUs.

Most functions in PopGenome are implemented in C or
C ++ to speed up computations and to limit memory re-
quirements. This also applies to the reading of genome-scale
alignments and SNP data. Supported alignment formats in-
clude FASTA, NEXUS, MEGA, MAF, and Phylip. An almost de
facto standard for whole-genome variation data is the Variant
Call Format (VCF), used, among others, by the 1000 genomes
project (1000genomes.org) and the UK10k project
(uk10k.org). PopGenome can read large SNP data sets
stored in this format very efficiently, using indexes created
with Tabix (Li 2011). SNPs in defined regions can be extracted
directly from the corresponding file without time-consuming
search operations over the entire file, with input speeds
exceeding 6,000 variant positions per second even on older
desktop computers.

The implementations of PopGenome’s data access func-
tions conform to a set of optimization guidelines to guarantee
a minimal reading time. To the best of our knowledge, there is
currently no general-purpose population genetics software
capable of directly accessing VCF files with comparable
speed. Typical times required to read large data sets are
listed in table 1.

PopGenome sessions can be saved on hard disk; thus, the
conversion to the biallelic matrix needs to be performed only
once per data set. The function region.as.fasta() can be used
to export data of a specific region, a group of subsites, or the
entire data set (i.e., all SNPs or even complete genome align-
ments) as a FASTA file. A parameter include.unknown indi-
cates if unknown positions should be included in the analyses.

Implemented Methods

To structure the rich landscape of population genetics and
genomics analysis methods, PopGenome partitions the im-
plemented methods into modules. Currently, PopGenome
provides nine modules (table 2). All modules use the

Table 1. Times Required to Read Large Data Sets.

Data Set Individuals SNPs Format Time for Readinga

Arabidopsis (Chr 1) 80 1,200,000 SNP (1001 Genomes) <1 minb

�3 min

Human (Chr2: 100–150 Mb) 1,094 660,000 VCF (1000 Genomes) �5 min

3450 individual alignments 25 200,000 FASTA �15 s

aIntel� CoreTM i3-2130 CPU @ 3.40 GHz � 4, 8 GB RAM, with data stored in temporary files.
bWithout temporary files, if sufficient RAM is available.
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GENOME object created when the input data were read, and
store their results in the same GENOME object. For analyses
that require to distinguish between ancestral and derived
alleles, outgroups can be specified.

As a default, all analyses packaged into one module are
performed simultaneously when the module is executed. To
accelerate calculations on large data sets, individual methods
can be switched off using additional arguments. We plan to
integrate more methods in the future, and welcome requests
for the implementation of specific statistics. In the next
release of PopGenome, we aim to incorporate methods for
detecting recent selective sweeps, such as the algorithm im-
plemented in the software SweeD (Pavlidis et al. 2013).

Apart from many “standard” statistics (e.g., neutrality
and linkage disequilibrium statistics), PopGenome offers
several tests for the detection of nonneutral evolution. So
far, we have implemented the McDonald–Kreitmann test
(McDonald and Kreitman 1991) and a wide range of FST
measurements, including an implementation of a previously
published method based on Bayesian statistics (Foll and
Gaggiotti 2008). PopGenome also includes a calculation of
r2 correlation coefficients and the corresponding P values
(Fisher’s exact test) for interregion calculations. By
concatenating the corresponding GENOME objects, statistics
that rely on comparisons between regions can be calculated
even when these are located on different chromosomes.
Details of the implemented methods are given in table 2
and in the PopGenome documentation.

PopGenome is fully integrated with two widely used coa-
lescent simulation tools: Hudson’s MS (Hudson 2002), as well
as Ewing’s MSMS (Ewing and Hermisson 2010), which incor-
porates selection. The PopGenome function MS() compares
the statistics calculated for the observed data with corre-
sponding data simulated by the coalescent method.
PopGenome supports the full coalescent simulation capabil-
ities of MS and MSMS. Parameters can be specified as vectors
in the dedicated class “cs.stats,” and thus different models
(mutation rates, migration rates, etc.) can be applied to dif-
ferent windows or regions of the genome. PopGenome’s
MS() function stores the calculated statistics of coalescent

simulations in a dedicated R object. Direct comparison to
coalescent simulations is currently implemented for the mod-
ules Neutrality statistics, Linkage, and FST. If statistics from
other modules need to be compared with coalescent simula-
tions, PopGenome can directly read MS output files and then
process these data using the method of interest (readMS()).

R is an efficient environment for large-scale computations.
However, although most native R functions are implemented
in C or Fortran, R itself is an interpreted and vector-oriented
language. As a consequence, some types of calculations tend
to be slow when applied to large objects. To avoid major
bottlenecks, we implemented several specialized calculations
in C ++ . PopGenome finishes the calculation of most statis-
tics in minutes even for very large data sets (table 3).

Partitioning and Interpreting SNPs

Users can restrict analyses to subregions specified either by
genomic coordinates or positions in SNP files. When an an-
notation file in GFF format is present (GFF v2 or v3),
PopGenome will automatically label SNPs located in genes,
exons, coding regions, and UTRs. Other annotations of inter-
est in the GFF file can be read using the function getgffinfo().

Table 2. Population Genetics Statistics Implemented in PopGenome’s Modules.

Module Statistics

Neutrality statistics Tajima’s D (Tajima 1989), Fu and Li’s F* & D* (Fu and Li 1993), Fay and Wu’s H (Fay and Wu 2000), Zeng’s E
(Zeng et al. 2006), Strobeck’s S (Strobeck 1987), Achaz’s Y (Achaz 2009), Fu’s FS (Fu 1997), Ramos-Onsins’ and
Rozas’ R2 (Ramos-Onsins and Rozas 2002), as well as all corresponding theta values

Linkage disequilibrium ZnS (Kelly 1997), B/Q (Wall 1999), ZA/ZZ (Rozas et al. 2001), and correlation coefficient r2 for each pair of SNPs
within or between windows/regions

Recombination statistics Four-gamete test (Hudson and Kaplan 1985)

Diversities Nucleotide and haplotype diversity (Hudson, Boos et al. 1992); (Nei 1979); see “Neutrality statistics” for a list of
calculated Theta values

Selective sweeps CL, CLR (Nielsen et al. 2005)

FST estimates GST (Nei 1973); FST (Hudson, Slatkin et al. 1992); GST, HST, KST (Hudson, Boos et al. 1992); Snn (Hudson 2000);
PhiST (Excoffier and Smouse 1992)

MKT McDonald–Kreitman test (McDonald and Kreitman 1991)

Mixed statistics Site frequency spectrum; fixed and shared polymorphisms; biallelic structure

BayeScanR Bayesian estimation of FST (Foll and Gaggiotti 2008)

Table 3. Calculation Speed for Haplotype and Nucleotide Diversity in
Sliding Windows.

Data Sliding Window (nucleotides) Running
Timea

Arabidopsis (Chr 1) Window size = 10,000 �30 s

80 individuals Jump size = 10,000

1,200,000 SNPs Number of windows = 3,042

Human
(Chr 2: 100–150 Mb)

Window size = 1,000 �5 min

1,094 individuals Jump size = 1,000

660,000 SNPs Number of windows = 50,000

3,450 alignments 3,450 windows (alignments) �7 s

25 individuals

5,086,953 sites

200,097 SNPs

aIntel� CoreTM i3-2130 CPU @ 3.40 GHz� 4, 8 GB RAM.
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The user can apply the full range of implemented methods to
all SNPs observed in a specific class (e.g., all exonic SNPs), or to
each region specified in the GFF file separately (e.g., all introns
individually).

If a GFF file is present, PopGenome can also classify syn-
onymous and nonsynonymous sites; for SNP data formats,
this additionally requires a reference genome in FASTA
format. PopGenome stores the codons internally as numerical
values, coded from a polynomial function as in the PGE
Toolbox (Cai 2008). Based on the GFF file, the function get.-
codons() will provide information about the nature of amino
acid changes resulting from the observed SNPs (encoded
amino acids, charges, hydrophobicities, size, and polarity
changes). Per default, PopGenome assumes the standard
genetic code, but alternative codes can be specified.

Most multipurpose population genetics software tools are
geared toward the analysis of discrete loci (Rozas et al. 2003;
Excoffier et al. 2005), restricting their utility for the analysis of
whole-genome SNP data sets. One widely used approach to
apply population genetics methods to whole-genome data
is the analysis of sliding windows (Rozas et al. 2001). In
PopGenome, users can freely choose window and jump
sizes for sliding windows, measured either in nucleotides or
in numbers of SNPs. The underlying algorithm copies the
information (mostly pointer) stored in the GENOME object
to another object of the same class, where the data are reor-
ganized into the specified windows. The full spectrum of
PopGenome methods is thus available both for arbitrarily
large sets of individual loci and for systematic genomic scans.

Easy Integration of New Methods

To be used by the scientific community at large, a new algo-
rithm ideally has to be implemented in a framework that
allows its efficient application to data in the diverse file for-
mats commonly used in different resequencing projects.
PopGenome is geared toward making this task as easy as
possible. All information required for the calculation of pop-
ulation genetics statistics, including the biallelic matrix as well
as genomic annotation, is stored in a GENOME object, which
new methods can directly access.

To further simplify the integration of new methods, we
implemented the function create.PopGenome.method(),
which generates a skeleton of a typical PopGenome function.
New methods thus implemented are fully embedded in the
PopGenome framework and can be applied to sliding win-
dows or subsites in the same way as the existing modules. This
approach frees developers of new population genetics or pop-
ulation genomics algorithms from the need to implement
many auxiliary functions, such as efficient data input and
output, data conversion, and region subsetting.

To enable PopGenome to work with additional data for-
mats, users can write a simple parser that converts the data to
a binary R object. The mechanism to integrate new methods
or data formats is documented extensively in a tutorial,
accessible by typing “vignette(“Integration_of_new_
Methods”)” in R (see also supplementary file S1,
Supplementary Material online).

Results
To illustrate the usage of PopGenome, we show two exem-
plary analyses for human and A. thaliana whole-genome SNP
data. More details are found in the PopGenome documenta-
tion and in supplementary file S2, Supplementary Material
online.

Diversity on A. thaliana Chromosome 1

The 1001 genomes project (1000genomes.org) stores all SNP
calls from one individual A. thaliana plant in one (.SNP) file. We
downloaded .SNP files for 80 individuals (Cao et al. 2011) into a
subdirectory named “Arabidopsis.” After starting R and load-
ing the PopGenome library, we read in the data for chromo-
some 1 to analyze diversity and population differentiation:

> library(PopGenome)

> genome <- readSNP(“Arabidopsis,” CHR=1)

We define the populations as a list of character vectors
containing the individuals of each population:

> Central_Asia <- c(“ICE127,” “ICE130,” “ICE134,”

“ICE138,” “ICE150,” “ICE152,” “ICE153” , “Sha”)

> . . . (analogous for the other populations) . . .

> populations <- list(Central_Asia, Caucasus,

N_Europe, N_Africa, S_Italy, S_Russia, S_Tyrol,

Swabia)

The population definitions are now added to the
GENOME object:

> genome<- set.populations(genome, populations)

We then transform these data into consecutive 10-kb-
sliding windows:

> genome.slide <- sliding.window.transform(ge-

nome, width=10000, jump=10000)

The nucleotide and haplotype diversities for each window
are calculated in the module diversity.stats. We store the re-
sults also in the GENOME object:

> genome.slide <- diversity.stats(genome.slide)

The “slot” of the GENOME object that stores the nucleo-
tide diversities of the individual populations is called
nuc.diversity.within. Slots of such objects are accessed by
appending the slot name to the object name, separated by
an @ symbol: genome.slide@nuc.diversity.within. These data
can be analyzed further using the built-in statistical
and graphical capabilities of R. Here, we plot the sliding
window nucleotide diversities (fig. 1A) with a specialized
function:

> PopGplot(genome.slide@nuc.diversity.within,

colours)

where colors is a vector listing the R names of the colors used
for the eight populations in the figure. The haplotype diversity
per 10-kb window (fig. 1B), as well as Hudson’s fixation index,
FST (fig. 1C), is produced with similar function calls.
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The data thus displayed in figure 1 indicate a lower level of
diversity in the Central Asia population of A. thaliana (dark
blue lines) along the whole chromosome. As reported earlier
(Cao et al. 2011), we observe a dip in diversity in the region
around 20 Mb in all populations, suggesting a recent selective
sweep in this region.

We find two additional, even stronger candidate re-
gions for selective sweeps around position 8 and 22 Mb.
Closer inspection of these two regions shows that they are
devoid of polymorphisms between positions 8765643 and
8831390, and between positions 21766562 and 21823063.
This observation suggests additional recent, species-wide se-
lective sweeps in these two regions. Furthermore, we find a
strong decrease in diversity in plants from Asia and
Southern Russia between genomic positions 11870001 and
11900000, suggesting a population-specific selective sweep in
this region.

Tajima’s D across Human MHC Exons

As a second illustration of the PopGenome usage, we calcu-
lated Tajima’s D around the human MHC (Major
Histocompatibility Complex) region. The 1000 genomes proj-
ect stores SNP calls from all examined individuals in gzipped
VCF format, together with a Tabix (Li 2011) index (.tbi) file. To
read data for the MHC region on human chromosome 6
(including the corresponding annotation in the GFF file),
we use the following line:

> genome <- readVCF(“chr6.vcf.gz,” numcols=

10000, tid=“6,” from=28000000, to=34000000,

gffpath=“chr6.gff”)

where “numcols” is the number of SNPs read in simulta-
neously, “tid” is a chromosome identifier, “from/to” delimit

FIG. 2. Tajima’s D calculated across nonsynonymous coding sites of
exons in the human MHC region on chromosome 6. Each data point
in (A) and (B) represents one exon; HLA type I and type II exons are
shown in red. (A) Tajima’s D of a Tuscan population (117 individuals),
plotted along chr. 6. (B) Comparison of Tajima’s D between a Tuscan
(117 individuals) and a Yoruba (229 individuals) population. (C)
Distribution (density curves) of the Tajima’s D values in (A) for MHC
(red) and non-MHC exons (black). The blue curve displays the distri-
bution of neutral values from coalescent simulations with Hudson’s MS
based on all SNPs in the MHC region. Data from 1000genomes.org.

FIG. 1. Diversity statistics for Arabidopsis thaliana chromosome 1. Data
from the 1001 genomes project website (1001genomes.org) was
analyzed in consecutive 10-kb windows. (A) Nucleotide diversity,
(B) haplotype diversity, (C) fixation index (Hudson’s FST), contrasting
one population against all other individuals. Each line corresponds to
one population (see legend in panel [A]). Lines were smoothed using
spline interpolation. The black bars around 15-Mb mask the
centromere.
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the nucleotide positions of the SNPs read in, and “gffpath”
specifies the position of the GFF annotation file. Based on the
annotations read from the GFF file and the chromosomal
reference sequence in FASTA format, the next command

labels positions in protein-coding regions as either synony-
mous or nonsynonymous:

> genome <- set.synnonsyn(genome, ref.chr=

“chr6.fas”)

FIG. 3. Comparison of PopGenome with existing software for population genetics and population genomics analyses. Symbols reflect the breadth of the
implemented functionalities: ++ , broad; + , limited; �, nonexistent. Details on the criteria used for assignment to the breadth classes are given in
supplementary table S1, Supplementary Material online.
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As in the Arabidopsis example, we define the populations
via the vectors “Africa” and “Europe,” which contain the iden-
tifiers of the corresponding individuals:

> genome <- set.populations(genome, list(Africa,

Europe))

Here, we want to calculate statistics for each exon individ-
ually, considering only nonsynonymous SNPs. To do this,
we first split the region into individual loci, where
each locus stores the SNP information from the coding se-
quence part contained in one exon, as annotated in the GFF
file:

> genome.exons <- splitting.data(genome,

subsites=“coding”)

Next, we calculate Tajima’s D across all nonsynonymous
positions of each exon. This calculation is performed in the
module “neutrality.stats”:

> genome.exons<- neutrality.stats(genome.exons,

subsites=”nonsyn”)

We thus obtain the data displayed in figure 2. The high
Tajima’s D values in some loci likely reflect balancing selection
(Hedrick 1998), for example, due to frequency-dependent
selection in pathogen recognition.

We can use coalescent simulations to derive the expected
neutral distribution of Tajima’s D values across the MHC
region. For this, we first calculate Theta across all SNPs in
the MHC region:

> genome <- neutrality.stats(genome)

We then use the genome object as input for a call to
Hudson’s MS program:

> ms <- MS(genome, thetaID=“Tajima,”

neutrality=TRUE)

If no additional parameters are specified for the MS sim-
ulations, PopGenome will use the standard neutral model
(SNM).

The simulated Tajima’s D values are then extracted:

> MS.get.stats(ms)

Figure 2C compares the distributions of expected
Tajima’s D values under the SNM with values observed
for Human Leukocyte Antigen (HLA, red) and non-HLA
(black) exons. The distribution of Tajima’s D values is
strongly shifted toward higher values in HLA exons com-
pared with non-HLA exons, indicating strong balancing
selection; a deviation from neutral expectations for HLA
exons is supported by a comparison to the simulated
data.

The highest Tajima’s D values—suggesting strong balanc-
ing selection—are seen in HLA type I and type II genes
(marked in red in fig. 2). Tajima’s D values are correlated
between the African (Yoruba) and European (Tuscany) pop-
ulations (fig. 2B; Spearman’s R2 = 0.33). One notable outlier is
the coding exon 2 of the HLA-DPA1 gene, which shows

evidence of purifying selection in Yoruba, but strong evidence
of balancing selection in Tuscans.

Discussion
Several computer programs for population genetics or pop-
ulation genomics analyses are publicly available. However,
these tend to specialize on specific subsets of analyses (e.g.,
Vilella 2005; Rozas et al. 2001; Purcell et al. 2007; Jombart 2008;
Paradis 2010) or cannot process whole-genome data (e.g.,
Rozas et al. 2003; Excoffier et al. 2005). Figure 3 compares
major features of PopGenome with five other widely used
software packages.

PopGenome can not only read data in several common
alignment formats but also understands the widest choice of
SNP data formats; this includes data from the HapMap as well
as the 1000 and 1001 genomes projects. PopGenome’s ability
to work efficiently with temporary files allows calculations on
very large SNP data sets. No other available program offers a
similar combination of flexible data input options with a
broad toolbox of population genetics and genomics statistics,
including the ability to perform analyses in sliding windows.

PopGenome can read GFF annotation files, which permits
high plasticity in the variability analysis of different regions of
the genome. PopGenome can link this annotation automat-
ically to the SNP data, which can thus be restricted to specific
annotated features or feature groups (e.g., all introns vs. all
exons). This feature also allows to discriminate synonymous
and nonsynonymous codon positions in whole-genome SNP
data sets, which is necessary, for example, for McDonald–
Kreitman tests. Like adegenet/pegas (which are more limited
in scope), PopGenome is fully integrated with the powerful
graphical and data analysis capabilities of the R environment
(http://cran.r-project.org/, last accessed April 30, 2014), thus
simplifying downstream analyses and graphics as well as the
development of stable work flows.

Supplementary Material
Supplementary files S1–S3 are available at Molecular Biology
and Evolution online (http://www.mbe.oxfordjournals.org/).
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