
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
flowCore: a Bioconductor package for high throughput flow 
cytometry
Florian Hahne*†1, Nolwenn LeMeur*†1,2, Ryan R Brinkman3, Byron Ellis4, 
Perry Haaland5, Deepayan Sarkar1, Josef Spidlen3, Errol Strain5 and 
Robert Gentleman1

Address: 1Life Sciences Department, Computational Biology Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research 
Center, 1100 Fairview Ave N, M2-B876, PO Box 19024, Seattle, Washington 98109-1024, USA, 2EA SeRAIC INSERM, IRISA – Symbiose, Campus 
Beaulieu, Université de Rennes I, 35042 Rennes Cedex, France, 3Terry Fox Laboratory, British Columbia Cancer Agency Research Centre, 675 West 
10th Avenue, Vancouver, BC V5Z 1L3, Canada, 4AdBrite Inc, 731 Market St, 5th Floor, San Francisco, California 94103, USA and 5BD Biosciences, 
Research Triangle Park, North Carolina 27709, USA

Email: Florian Hahne* - fhahne@fhcrc.org; Nolwenn LeMeur* - nlemeur@irisa.fr; Ryan R Brinkman - rbrinkman@bccrc.ca; 
Byron Ellis - byron.ellis@gmail.com; Perry Haaland - Perry_D_Haaland@bd.com; Deepayan Sarkar - dsarkar@fhcrc.org; 
Josef Spidlen - jspidlen@bccrc.ca; Errol Strain - estrain@gmail.com; Robert Gentleman - rgentlem@fhcrc.org

* Corresponding authors    †Equal contributors

Abstract
Background: Recent advances in automation technologies have enabled the use of flow cytometry
for high throughput screening, generating large complex data sets often in clinical trials or drug
discovery settings. However, data management and data analysis methods have not advanced
sufficiently far from the initial small-scale studies to support modeling in the presence of multiple
covariates.

Results: We developed a set of flexible open source computational tools in the R package
flowCore to facilitate the analysis of these complex data. A key component of which is having
suitable data structures that support the application of similar operations to a collection of samples
or a clinical cohort. In addition, our software constitutes a shared and extensible research platform
that enables collaboration between bioinformaticians, computer scientists, statisticians, biologists
and clinicians. This platform will foster the development of novel analytic methods for flow
cytometry.

Conclusion: The software has been applied in the analysis of various data sets and its data
structures have proven to be highly efficient in capturing and organizing the analytic work flow.
Finally, a number of additional Bioconductor packages successfully build on the infrastructure
provided by flowCore, open new avenues for flow data analysis.

Background
Automation technologies developed during the last sev-
eral years have enabled the use of flow cytometry (FCM)
to generate large, complex data sets in both basic and clin-
ical research applications [1]. A serious bottleneck in the

interpretation of existing studies and the application of
high throughput FCM to even larger, more complex prob-
lems is that data management and data analysis methods
have not advanced sufficiently far from the methods
developed for applications of FCM to small-scale, tube-
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based studies [2]. In particular, the data often need to be
organized into groups of samples based on combinations
of additional covariates and similar operations need to be
applied to these groups in a transparent and reproducible
manner. Furthermore, the growing depth of knowledge in
the field of immunology, for instance the characterization
of distinct human T-cell sub-population [3], clearly argues
for more systematic approaches.

Some of the consequences of the lag of efficient software
solutions are difficulties in maintaining the integrity and
documentation of large data sets, assessing measurement
quality, developing validated assays, controlling the accu-
racy of gating techniques, automating complex gating
strategies, and aggregating statistical results across large
study sets for further analysis. In addition, new analysis
approaches face difficulty in finding their way into stand-
ard practice. We believe that these barriers to the develop-
ment and dissemination of new analysis methods is one
of the fundamental restraints on the future expansion of
FC-HCS in both clinical and research applications.

Traditionally, for the majority, FCM experiments were
being analyzed by manual data inspection in one or two
dimensions, or by very basic comparisons of summary
statistics. Most of the currently available analysis tools are
designed to reflect this work flow. We believe that these
approaches, in addition to being expensive and labor
intensive, do not fully address the highly complex nature
of FCM data; in particular, they disregard many of the fun-
damental aspects of the data, such as sample groups or
cohorts, the underlying distribution or its high-dimen-
sional nature. Furthermore, the subjective character of
manual analyses are a major obstacle to reproducibility.
In a recent study of flow cytometric standardization
involving 15 institutions, the mean inter-laboratory coef-
ficient of variation ranged from 17 to 44%, even though
preparation was standardized and performed using the
same samples and reagents at each site [4]. For FC-HCS
data, unassisted manual inspection is extremely time con-
suming, and robust statistical methods need to be devel-
oped to point investigators to interesting aspects of the
data, or to potential problems. While the expert knowl-
edge of immunologists and researchers remains crucial for
the understanding of FCM data, we believe that collabora-
tion with other research fields such as statistics and com-
puter science can greatly improve the relevance of FCM in
today's high-throughput paradigm. In this paper, we
describe a set of flexible and well structured computa-
tional tools to efficiently analyze FC-HCS data. Our intent
is to provide a shared research platform that enables bio-
informaticians, computer scientists, and statisticians to
work collaboratively with biologists and clinicians to
develop novel methods for FCM data analysis, a process
deemed crucial by many for the further development of
the technology [5].

Implementation
The computational tools we have developed are distrib-
uted in the R software language [6] as the Bioconductor
[7] package flowCore. The package flowCore is a freely
available, highly functional, and extensible FCM data
analysis platform that enables researchers to efficiently
handle FC-HCS data and encourages open development
of tools for their coherent analysis. In our implementa-
tion of flowCore we rely on two important lessons learned
from the field of gene expression data analysis: the first
being the importance of data structures that reflect the
underlying data and facilitate the manipulations that are
of most interest, while the second is the importance of a
modular architecture that allows for many developers to
extend and use the underlying infrastructure and to com-
bine tools in complex work flows. flowCore implements
such computationally efficient data structures and a range
of specialized methods addressing all components of a
typical FCM analysis work flow, including compensation,
transformation, and gating. flowCore runs on Windows,
Mac OS X, and Linux/Unix operating systems.

Existing data standards and conventions
Currently, data from FCM experiments are stored in single
files according to the Flow Cytometry Standard (FCS) [8].
However, recent developments in high-throughput FCM
are shifting the focus of interest away from single-tube
based measurements towards large and complex experi-
mental designs with dozens of covariates and influencing
factors. For example, experiments consist of large numbers
of samples from different patients, measured at different
time points [1] or following different drug treatments [9].
Modern FCM data analysis tools have to deal with an addi-
tional layer of sample metadata and they need to provide
infrastructure to process and to compare groups of samples
in a concise and coordinated manner. The notion of classes
from an object-oriented programming language provides
one coherent way to describe these richer data structures. In
addition, functions or methods that work on those classes
allow for interaction and manipulation. Many of the cur-
rently available software solutions offer only limited sup-
port for such self-contained structures, or make use of
binary storage containers that are designed specifically for
the needs of particular user interfaces and hence are not eas-
ily amenable to programmatical access. In addition, the
closed-source nature of these products often makes them
impractical to integrate into analysis pipelines. In this man-
uscript we describe classes for FCM data analysis and their
implementation in R, however, they could just as easily be
implemented in any other language (e.g., Java, C++). Soft-
ware written in those languages could use similar data
structures, thereby simplifying communication and the
interchange of data between analysis tools.

flowCore does not provide a graphical user interface and
all operations are done using a command line interface. It
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is possible to add a more elaborate user interface on top
of this infrastructure, however the focus in this paper is on
a programmatic approach to enable the convenient devel-
opment of novel analysis methods and automation of
complex analysis approaches. By taking the burden of
data management from the programmer, and by provid-
ing well-defined application programming interfaces
(APIs), it is possible to readily test new ideas and to easily
extend the framework's functionality.

The flowCore framework presented here can import and
process raw data FCS files along with their complete set of
file-specific metadata (Figure 1). Moreover, it is a software
implementation of the Gating Markup Language Candi-
date Recommendation, an emerging standard developed
in collaboration with the International Society for Analyt-
ical Cytology (ISAC) Data Standards Task Force, which
makes it possible to integrate flowCore in existing work
flows and to communicate with any other FCM tool that
adheres to the proposed standard [10]. Adherence to
standards also plays a critical role in the ability of new
methods based on flowCore to find their way back into
the standard practices for FCM data analysis.

Basic Data Structures
flowFrame: sample unit
flowCore's primary task is the representation and basic
manipulation of FCM data. This is accomplished through
a data model very close to that adopted by other successful
Bioconductor packages. All information from a single FCS
file, i.e., the collection of events and the accompanying
metadata, is stored in one single container. We call the
structure that hold this data a flowFrame (Figure 1). Raw
data values as well as associated metadata of a flowFrame
can be accessed programmatically. Most commonly, the
metadata consist of descriptors of the stains used in the
experiment and the respective measurement channels,
information about compensation performed at the instru-
ment side and any additional keywords the user deems to
be important to annotate the data. During the creation of
a flowFrame, a number of quality checks are performed to
ensure data integrity.

flowSet: a collection of flowFrames
In high-throughput FCM, many of the analysis tasks need to
be performed consistently across multiple samples, hence we
introduce the concept of a collection of flowFrames called a

flowCore frameworkFigure 1
flowCore framework. For each experiment, the content of the FCS files, phenotypic and metadata are stored in a flowSet. 
Each flowFrame in a flowSet corresponds to one FCS file. All basic operations (e.g., compensation, transformation, gating) can be 
applied to either single flowFrames or a flowSet simultaneously.
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flowSet (Figure 1). A flowSet is a container for multiple flow-
Frames along with relevant information associated with each
individual frame such as descriptions of the cell sample, the
treatment to which the sample was subjected, or the location
of that sample in a microtitre plate. The objects are self-con-
tained and can be shipped to other computers, platform
independently. flowSets manage the consistent application of
operations on the individual flowFrames and shift the burden
of keeping score of the metadata from the user to the infra-
structure, thus reducing the risk of errors (e.g., mixups of
sample labels). Crucial operations like taking subsets, data
transformations and gating, or computation of summary sta-
tistics are greatly facilitated and all relevant annotation infor-
mation is constantly passed on along the analysis pipeline.
The flowSet structure can be readily extended to incorporate
the potentially complex metadata associated with even larger
FC-HCS experiments such as clinical trials, where hundreds
of patients might provide samples at different time points
over the course of the experiment. The flowSet data structure
is one of the key features in the flowCore package and it is
fundamental to the implementation of many of the high
level functionalities such as quality assessment and control,
visualization and automated gating.

Standard flow operations
Typically, the basic operations in FCM analyses adhere to
the following common work flow: the data need to be
compensated (if that was not already done on the instru-
ment) and transformed, and sub-populations of interest
need to be selected based on a set of (predominantly
sequential) gates. All software solutions for FCM analysis
offer support for these operations, most often in an inter-
active, graphical user interface. In flowCore we have taken
the approach to abstractly describe these operations and
build a set of tools to perform them on both flowFrames
and flowSets. Typically, the results of these operations are
again flowFrame or flowSet objects. While transformation,
and to a certain extent compensation, are fairly routine
operations with only limited potential for improvement,
being able to implement new methodologies for gating of
FCM data, and extend the capabilities of flowCore
through object oriented programming are features that
clearly sets our framework apart from other FCM analysis
tools. By factoring out as much of the bookkeeping as pos-
sible, programmers can focus on the actual operations
rather then having to deal with the tedious details of data
integration and access. Third-party methods can act on
their own as first-class citizens in the analysis framework,
without breaking the work flow or the basic infrastructure.
This design allows for the straightforward extension of
flowCore's capabilities, and has already fostered the
development of a number of valuable add-ons [11,12].

Transformation and compensation
Data transformation is essential for both data visualiza-
tion and modeling [11]. The major transformations that

are routinely used in FCM analysis have been imple-
mented in flowCore (e.g., log, bi-exponential, arcsinh or
logicle [13], see Table 1 for a complete list). Furthermore,
the design of the R language makes it easy to define arbi-
trary functions to apply to the data of individual flow-
Frames or entire flowSets, respectively. Compensation, that
corrects for fluorescence spillover originating from the
inherent overlap of emission spectra from antibody fluo-
rescent labels, is available for both flowFrames and
flowSets. In addition, the software offers functionality to
compute spillover or compensation matrices from a set of
appropriate single stain controls.

Gating
In flowCore, gating operations are represented by classes
that can be extended in an object-oriented manner (Table
2). Basic gate types such as rectangular gates, ellipses and
polygon gates are implemented as part of the framework.
In addition, we introduce the notion of data-driven gates,
or filters, for which the necessary parameters are com-
puted based on the properties of the underlying data, for
instance by modeling data distribution or by density esti-
mation. This approach is fundamentally different from
the traditional application of static gating regions across
samples, as it is able to take into accounts unforeseen
changes in signal intensities, such as drifts in the instru-
mentation over time or sample variability.

The ability to programmatically access gates is a prerequi-
site for semi-automated or automated gating. By utilizing
an unified interface for all different types of gates, the user
is able to subset data sets as well as to create summary sta-
tistics, as for instance the proportions of events falling in
a single gate or in a combination of gates. Complex com-
binations and hierarchies of gates can be captured in
multi-step gating strategies. The definition of gates in
flowCore follows the Gating Markup Language Candidate
Recommendation [10], thus any flowCore gating strategy

Table 1: Data transformations implemented in flowCore.

Data Transformations

linear ax + b
quadratic ax2 + bx + c
natural logarithm loge(x)(r/d)
logarithm logb(x)(r/d)
biexponential ae(b*x) – ce(-d+x) +f
logicle Te-(m-w)(e(x-w)-p2e-(x-w)/p + p2-1)
truncate xx≤a = a
scale (x-a)/(b-a)
arcsinh arcsinh(a +bx) + c

Within these formulas, x is the variable corresponding to value being 
transformed, a, b, c, d, f, p, m, T, and w, are constants affecting the 
transformation function, e is the base of the natural logarithm (see 
[13] for details on the logicle transformation). Other transformations 
can easily be implemented in R.
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can be reproduced by any other software that also adheres
to the standard and vice versa.

Gating, as well as all other operations in flowCore, can be
applied over each individual frame in a flowSet, and sum-
mary methods provide information about the outcome of
these operations. In addition, the result of a gating opera-
tion can be used to subset the input flowFrame or flowSet,
either by filtering out negative events or by splitting in
multiple sub-populations. This design allows to easily
combine all of flowCore's components into complex
work flows.

Results and discussion
From quality assessment to batch gating
The flowCore package has been successfully applied in the
analysis of several data sets, both originating from clinical
trials [1] and drug discovery experiments [9]. A complete
description of the methods implemented in flowCore is
beyond the scope of this publication. Much more compre-
hensive documentation and users guide information with
programmatic examples are available online http://bio
conductor.org/packages/2.2/bioc/html/flowCore.html, as
part of the package distribution. Here, we want to briefly
exemplify some of the software's key features, that is, the
coherent treatment of all samples in a potentially large
experiment, the concept of data-driven automated gating,
the integration of existing software into the framework,
and the generation of publication-quality graphics for
data visualization.

Data analysis for most experiments usually begins with a
quality assurance step. In a FCS analysis work flow, we can
use functionality from the flowQ package, build upon

flowCore, to create an HTML report that highlights poten-
tial quality issues. Assuming that the data has already
been imported as the flowSet object "dat", using for
instance the read. flowSet method, the following simple
lines of code produce the output shown in Figure 2:

> library(flowQ)

> qaReport(dat, c("qaProcess.timeline",

"qaProcess.timeflow",

"qaProcess.cellnumber"))

The report is interactive and provides drill-down to more
detailed aspects of the analysis, starting from a concise
overview. The design of flowCore's data model allows for
a coherent treatment of all the samples, hence we are able
to compare features between individuals, or between
groups of individuals, based on the available metadata
information.

According quality of the measurements, the next steps of
a FCS analysis work flow are potentially the compensa-
tion and transformation of the data. Once again flow-
Core's data structure and its methods allow a flexible
processing. One can use the basic transformation and
compensation functions implemented in flowCore (Table
1) or develop its own approaches that could then be apply
to flowFrame or flowSet. Ultimately, a flow cytometry
experiment aims at identifying and characterizing cell
population of biological interest, using static gating or
data-driven procedures (Table 2). Static gating for all sam-
ples in a high-throughput FCM experiment is often
impossible, since the measured variables tend to vary
between different treatments, over time or between differ-
ent experiment batches. Automated or data-driven gating
has the potential to estimate the gating regions from the
underlying data, thus providing a fast objective solution
to the analysis of potentially very large and diverse data
sets [11]. One of the automated gating methods imple-
mented in flowCore is based on identifying areas of signif-
icant curvature in a kernel density estimate of the data
[14]. Assuming that the regions of interest are of high den-
sity, the software is able to reliably detect them in a one-
or two-dimensional density landscape.

> cf <- curv2Filter("FL1-H", "FL3-H")

> fres <- filter(dat, cf)

Kernel density estimation is a well-known problem in sta-
tistical computing, and a lot of effort has been invested in
the development of good software to address it. The mod-
ular design of flowCore allows to easily integrate these
existing solutions into our framework. In this example, we

Table 2: Filter and gate classes implemented in flowCore.

Gates

rectangleGate n-dimensional rectangular regions
quadGate quadrant regions in two dimensions
polygonGate polygonal regions in two dimensions
polytopeGate generalization of polygon in n dimensions
ellipsoidGate n-dimensional ellipsoid region

Filters

sampleFilter random sub-sampling
expressionFilter results of a boolean expression
kmeansFilter K-means clustering
norm2Filter bivariate normal distribution
curv1Filter local density regions in 1D
curv2Filter density regions in 2D
timeFilter abnormal data acquisition over time

filterSet gating strategies

Filters are automated, data driven procedures. Gates are static, user-
defined methods.
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directly use R code from the feature package [14]. Instead
of re-writing existing code, we are able to include it via the
well tested distribution mechanism provided by R's soft-
ware package system. This process is bi-directional, and all
functionalities implemented in flowCore are available to
other package authors.

Finally, we can chose one of the many visualization
options from the flowViz package to plot the results of the
recent filtering operation. A very basic matrix of density
plots is shown in Figure 3, where each panel in the matrix
represents the fluorescent measurements of two channels
for one individual patient.

> xyplot('FL1-H' ~ 'FL3-H' | SampleID,

data = dat, filter = fres)

Scripting languages like R provide a natural representation
of work flows through a sequence of code instructions in
regular text files. This allows for the rapid development
and testing of new ideas, however it is not very well suited
for routine data analysis tasks. Furthermore, the overhead

of data management and variable tracking can be consid-
erable. To that end, flowCore also provides data structures
that help organize sequences of typical FCM data analysis
operations and complex gating strategies into concise
work flows. These structures are self-re effective, they con-
tain all intermediate results and offer a unified user inter-
face to assess the progress and the outcome of an analysis.

Related flow packages
In addition to the flowCore package that offers basic infra-
structure, we have implemented a range of additional Bio-
conductor packages that are dedicated to more specific
tasks of FCM data analysis. As exemplified in the previous
section, the flowViz package [12] provides sophisticated
data visualization tools, that make use off multivariate
trellis plotting [15]. These functions can be used to
quickly generate customized plots for extended cytometry
data sets for both direct data inspection and quality con-
trol. The objects metadata information can be used to
arrange the layout and composition of the plots.

Furthermore, the design and the API of the visualization
software is very generic, and users can readily extend its

Quality assessmentFigure 2
Quality assessment. HTML quality assessment report generated by the flowQ package for a subset of data from an experi-
ment focusing on Graft-Versus-Host Disease [1]. Rows correspond to the samples in the set, columns to different quality 
checks.
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capabilities by providing self-defined plotting functions.
The flowQ package offers more advanced quality assur-
ance methodology and a framework to create interactive
web-based reports of quality assurance results. The flowU-
til package implements data import and export including
flow-cytometry specific standard markup language.
Finally, the flowStats package provides elaborate statisti-

cal methods that are relevant in the context of flow cytom-
etry data analysis.

More recently, [11] have developed an automatic gating
approach via robust model-based clustering using flow-
Core's data model and infrastructure which is imple-
mented in the Bioconductor package flowClust. Another

Batch gatingFigure 3
Batch gating. Scatterplot matrix of a single flowSet from an experiment focusing on immune tolerance following kidney trans-
plantation. Outlines of the gating regions identified by a curve2Filter automated gating operation are added on top of the density 
representation of the data.
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package, plateCore, providing more specialized support
for experiments conducted on microtitre plates and facili-
tating the handling of spatial metadata, is under develop-
ment.

Conclusion
Through flowCore, we have provided the FCM commu-
nity with an open source, freely available, highly func-
tional, and standards compliant, development and
analysis platform for high throughput data analysis. We
hope to foster collaborative development of new analysis
methods and to facilitate the transition of these new
methods to a larger flow community. Our experience has
been that such collaborative effort has proven beneficial
for a number of different biological and computational
biology challenges, greatly elevating their applicability.
We hope that our framework will be the foundation for
fruitful shared research by many collaborators from mul-
tiple scientific fields and will help resolve bottlenecks that
currently prevent further development and deployment of
FC-HCS to increasingly complex and important scientific
and clinical applications.

Availability and requirements
Project name: flowCore; Project home page: http://bio
conductor.org; Operating system(s): A wide variety of
UNIX platforms, Windows and MacOS.; Programming
language: R; License: The Artistic License, Version 2.0.

The flowCore package and its associated packages are part
of the R/Bioconductor project, an environment for statis-
tical computing and bioinformatics. The R software envi-
ronment is freely available at http://www.r-project.org.
flowCore and its dependencies (flowQ, flowViz) are avail-
able on the Bioconductor project website http://biocon
ductor.org as freely distributed and open source software
packages with an Artistic license. They are fully integrated
into the R/Bioconductor environment for statistical com-
puting and bioinformatics and run on operating systems
Windows, Mac OS X, and Unix.
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