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Vertebrates have evolved to gigantic sizes repeatedly over the past 250 Myr,

reaching their extreme in today’s baleen whales (Mysticeti). Hypotheses

for the evolution of exceptionally large size in mysticetes range from niche par-

titioning to predator avoidance, but there has been no quantitative examination

of body size evolutionary dynamics in this clade and it remains unclear when,

why or how gigantism evolved. By fitting phylogenetic macroevolutionary

models to a dataset consisting of living and extinct species, we show that mys-

ticetes underwent a clade-wide shift in their mode of body size evolution

during the Plio-Pleistocene. This transition, from Brownian motion-like

dynamics to a trended random walk towards larger size, is temporally linked

to the onset of seasonally intensified upwelling along coastal ecosystems.

High prey densities resulting from wind-driven upwelling, rather than abun-

dant resources alone, are the primary determinant of efficient foraging in

extant mysticetes and Late Pliocene changes in ocean dynamics may have

provided an ecological pathway to gigantism in multiple independent lineages.
1. Introduction
Vertebrates have evolved to gigantic sizes repeatedly over the past 250 Myr [1,2],

reaching their extreme in today’s blue whale, Balaenoptera musculus, which is the

largest animal to have ever lived. All living baleen whales (Mysticeti), including

the blue whale, are obligate suspension feeders and they possess a complex suite

of adaptations that enhance the energetic efficiency of foraging on small-bodied,

low trophic-level prey [3–5]. That such large animals should feed on such small

prey is not without precedent; the fossil record demonstrates that large-bodied sus-

pension feeders have arisen on several occasions in diverse clades [1,6,7]. However,

the ecological mechanisms and evolutionary processes that promote and maintain

gigantism remain poorly understood in general [1], and we lack a comprehensive

understanding of how and when mysticetes, in particular, attained such large sizes.

Macroevolutionary analyses based on phylogenies of extant cetaceans have

suggested a number of possible explanations for the evolution of mysticete

gigantism, including diet-related niche partitioning among the earliest represen-

tatives of crown cetacean clades [8], rapid rates of body size evolution along

the mysticete stem [9] or as one expected outcome of trade-offs between the

short-term fitness benefits of size increases versus long-term costs (i.e. increased

extinction risk) associated with large size [10]. While most of these hypotheses

predict that gigantism should have evolved relatively early in the clade’s history,

as in terrestrial mammals [11], the mysticete fossil record suggests a much later

origin of exceptionally large size [2,12–15] but see [16]. From their origin in the

Late Eocene or Early Oligocene through the Middle Miocene, the largest mysti-

cetes remained less than 10 m long, though several lineages appear to have

independently explored the upper reaches of this size spectrum [16–18]. Lambert

et al. [13] argued that true gigantism, defined as body lengths larger than 10 m,
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evolved in the early Late Miocene in response to the evolution of

large macro-predatory physeteroid odontocetes and lamniform

sharks. Others have suggested a later, Plio-Pleistocene origin for

gigantism, either as a direct response to increased near-shore

primary productivity from the Late Miocene onwards [12]

or else owing to the effects of glacial cycles on habitat avail-

ability and resource distributions [14]. Despite a rich fossil

record that is ideally suited for macroevolutionary inference

[19], there have been no quantitative tests of when and how

mysticetes achieved gigantic sizes. As such, it remains to be

determined whether the evolution of blue whale-sized animals

requires special explanation or whether it is simply one

plausible outcome of a stochastic, constant-rates process [20].

Here, we leverage the excellent fossil record of mysticetes and

a robust phylogenetic framework to provide, to our knowledge,

the first formal test of when and how gigantism evolved. Using

novel phylogenetic models of body size evolution and extensive

simulation, we show that the evolution of exceptionally large size

(more than 10 m) is a recent phenomenon that results from a

fundamental clade-wide shift in the mode of bodysize evolution.
 6
2. Material and methods
(a) Body size data
Studies of mammalian body size evolution typically focus on body

mass, given the well-defined anatomical and physiological

responses of this trait to abiotic factors [11]. Reliable estimates

of body mass are rare for cetaceans but available data indicate

that total length (TL) scales with mass1/3 [21]. We therefore used

log10(TL) as the metric for our analyses. We took a conservative

approach to defining lengths for extant species by collecting

length data from museum specimens, stranding records, aerial sur-

veys and aboriginal subsistence harvests that, unlike commercial

whaling records, are not subject to minimum length restrictions

[22] and so do not lead to a potentially false distinction between

extant and extinct body size distributions. Data collection

was restricted to adult individuals, and resulted in an average

n of 13.3 individuals per extant species (range ¼ 1–57; electronic

supplementary material, table S1).

For extinct mysticetes, we estimated log10(TL) in millimetres as

log10(TL) ¼ 0:92 � [log10(bizyg)� 1:72]þ 2:68, ð2:1Þ

where bizyg is the bizygomatic breadth of the skull, measured in

millimetres [23], which we obtained either from direct measure-

ment of fossil specimens (by N.D.P.) or from the literature.

Because this approach requires well-preserved crania, we were

only able to obtain a single size estimate for each fossil species.

We computed species means for all species where n . 1. To

account for measurement error in comparative model fitting

(see below), we computed a pooled variance over all species rep-

resented by multiple specimens. The standard error of the mean

for the ith species, including fossil taxa, was then computed as

the pooled standard deviation divided by the square root of ni.

(b) Phylogenetic inference
As a framework for macroevolutionary inference, we jointly esti-

mated topology and branch lengths, in millions of years, of

mysticete phylogeny from morphological and molecular data

using BEAST v. 2.2.1 [24], accessed through the CIPRES Science

Gateway [25]. Morphological character data for 13 extant and

63 extinct mysticetes were based on [14]. We also downloaded

11 nuclear loci and coding regions of mitochondrial genomes,

where available, for all 15 extant mysticete species from Genbank

(electronic supplementary material, table S1). We used the
fossilized birth–death (FBD) process [26] as a prior on the distri-

bution of branching times and branch lengths while allowing for

potential ancestor-descendant relationships [27,28]. Complete

details of phylogenetic analyses are provided in the electronic

supplementary material.

(c) Tempo and mode of body size evolution
We first computed two measures of phylogenetic signal (Pagel’s l

[29] and Blomberg’s K [30]) for log10(TL), using PHYTOOLS v. 0.5-38

[31] for R v. 3.3.1 [32]. We also evaluated trends in subclade disparity

through time (DTT) [33] using a modified version of code from

GEIGER v. 2.0.6 [34]. We compared mysticete DTT to a null expectation

derived from 10 000 Brownian motion (BM) simulations, and com-

puted the morphological disparity index (MDI) as the area

between the median of these simulations and the observed curve.

To explicitly test hypotheses for the evolution of mysticete

gigantism, we fitted a series of macroevolutionary models to our

comparative dataset using maximum likelihood (ML). We fitted

time-homogenous single rate BM, single peak Ornstein–Uhlenbeck

(OU), biased random walk (also referred to as a trend model), and

time-dependent rate (accelerating/decelerating: AC/DC) models

of morphological evolution using the fitContinuous function

in geiger. Variance of the means was added to the diagonal

elements (variances) of the model-specific variance-covariance

matrix during model fitting to account for measurement error. We

used the OUwie.slice function in the OUwie package [35] to fit

a variable rate model in which we allowed evolutionary rates to

shift from one rate regime to another (either higher or lower) at

some point in the past, with the shift point treated as a free par-

ameter. We also tested for an effect of mean global ocean

temperature, approximated as the d180 curve of [36], on rates of

body size evolution using the fit_t_env function [37] in the

RPANDA package [38]. We generated a smooth cubic spline

(d.f. ¼ 15, figure 1) from the d180 data using the smooth.spline

function in the stats package in R and allowed rates of size

evolution to vary as a function of this curve. Use of higher degrees

of freedom, allowing for a more detailed curve, did not change ML

parameter estimates or likelihoods.

We finally considered an alternative model where the mode of

size evolution shifts from unbiased BM to a trended random walk

at some time, tshift, in the past. Under this model, the elements Vij of

the phylogenetic variance–covariance matrix are identical to those

of unbiased BM but elements in the vector of expected mean trait

values E(x) are given by

EðxiÞ ¼
uþ bðtshift � tiÞ, if ti < tshift

u, if ti � tshift,

�
ð2:2Þ

where xi is the expected value of the ith terminal taxon, ti is its occur-

rence time in millions of years before present, u is the root state andb

is the trend parameter, which may be positive (size increases with

time) or negative (size decreases). We treated u, b, tshift and evol-

utionary rate (s2) as free parameters in our model. Simulation

tests indicate appropriate false positive rates when fitting this

model, and parameter identifiability is generally good (electronic

supplementary material). Relative support for each model was

assessed through computation of small sample corrected Akaike

weights (wA) and support for the best-fitting model over a time-

homogeneous BM model was assessed via a parametric bootstrap

using 1000 simulated datasets. We assessed the robustness of our

results to topological and branch length variation by fitting all

models to both the maximum clade credibility (MCC) tree and

1000 trees drawn at random from the post-burn in posterior sample.

(d) Effects of preservation bias
An artificial break between the body size distributions of extant

and extinct mysticetes could arise if large-bodied pelagic taxa

exhibit decreased fossilization or sampling probabilities. We
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Figure 1. Mean body lengths for extant mysticetes and estimated length for fossil species (baleen-bearing mysticetes, circles; toothed mysticetes, triangles) are
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used a simulation approach to determine the effects of such

size-biased sampling on subsequent macroevolutionary model

inference when the true model of evolution is an unbiased, con-

stant rates process. Our simulations treated sampling probability

as a logistic function of size, with sampling ranging from random

(P[sampling] ¼ 0.5 for all taxa) to completely biased against large

taxa (P[sampling] ¼ 0 for any fossil taxon larger than the clade

mean). Full details of our simulation procedure and methods

are provided in the electronic supplementary material.
3. Results
(a) Body length
Extant baleen whales have a right-shifted body size distri-

bution compared to their fossil relatives (figure 1). Notably,

this is not simply owing to the largest extant mysticetes

being larger than the largest fossil species; the smallest

extant mysticete, Caperea marginata, is larger than the smallest

fossil taxa and is more comparable to the average size of

mysticetes for the Oligocene through to the Pliocene.

(b) Phylogenetic inference
The MCC tree topology is in general agreement with previous

studies of both extant and fossil mysticete phylogeny [14],

including the placement of Eschrictius and Megaptera within a

paraphyletic Balaenoptera (figure 2). Divergence time estimates

are somewhat younger than previous estimates derived

from tip-dating [14], which probably results from use of the

FBD tree prior [39]. Mapping body size onto the MCC tree

topology (figure 2) confirms that increases in body size occur

independently in multiple lineages of extant mysticetes.

(c) Tempo and mode of body size evolution
Phylogenetic signal in mysticete body size is high (Pagel’s

l ¼ 0.94, likelihood ratio test vs l ¼ 0 p , 0.001; Blomberg’s

K ¼ 0.47, p , 0.01). DTT analysis is mostly consistent with

a constant rates process (MDI ¼20.063, p ¼ 0.65) but

shows a pronounced pulse of increased within-clade variation

at approximately 5 Ma that is inconsistent with a time-

homogeneous evolutionary process ( p¼ 0.066; figure 3).
None of the models allowing for time-dependent or

temperature-dependent rates, temporal trends in the mean

(e.g. Cope’s rule), or a stationary optimal size provided a

better fit to mysticete body size data than a simple Brownian

diffusion model with a single evolutionary rate (Akaike

Weight, wA, for BM ¼ 0.33; wA other models less than 0.26).

However, we found strong support (wA ¼ 0.97) for the

mode-shift model in which body size evolution switches

from a slow unbiased random walk to an upward-biased

random walk, with an inferred shift time of 0.19 Ma. Closer

inspection of results revealed a saddle point in the likelihood

surface for this model that is attributable to a lack of fossil

data in the interval 3-0 Ma. Pleistocene glacial cycles and

associated exposure and erosion of shelf area limit the preser-

vation potential of Pleistocene cetacean fossils and little

complete material is available for this interval [40]. Rather

than attempting to add fragmentary Pleistocene fossil taxa

to the tree, we instead reviewed the literature for fossil occur-

rences of extant species that could be used to truncate

terminal branches and, in turn, create a Pleistocene pseudo-

fossil record. Two fossil occurrences fulfilled our strict

requirement of being identifiable to the species level and pre-

serving sufficient morphology to confirm that they fall within

the range of sizes exhibited by extant populations; a posterior

cranium of a humpback whale (Megaptera novaeangliae) from

the lower Kioroshi Fm Japan is dated to 0.125–0.15 Ma [41] and a

grey whale (Eschrichtius robustus) skull and skeleton from the

San Pedro Sand, California [42] is dated to 0.2–0.5 Ma [43]. Trun-

cating the terminal branches for these two species to their

youngest possible ages (0.125 and 0.2 Ma, respectively) resulted

in a positive-definite Hessian matrix and increased support

(wA ¼ 0.99; table 1) for a slightly older mode shift (0.31 Ma)

with a 2-unit support range [44] of 0.13–4.5 Ma (figure 4).
(d) Effects of preservation bias
Using simulated data, we found no effect of size-biased

sampling on false detection rates for the mode-shift model.

This result holds even when assigning a sampling probability

of zero to all fossil species larger than the clade’s mean size

(electronic supplementary material).
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4. Discussion
A general difficulty, faced by both palaeontologists and biol-

ogists, in attempting to tie qualitative morphological patterns

to macroevolutionary process is that multiple explanations
often predict the same general outcome [45]. The mysticete

fossil record qualitatively suggests a recent emergence for

gigantism, and a number of compelling hypotheses have

been advanced to explain this pattern, including a response

to the evolution of macropredators [1,13], increases in coastal
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productivity [12], and glacial disruption of near-shore habitat

[14]. Additional plausible explanations can be formulated

that would also be consistent with the qualitative pattern but

that invoke vastly different timings or processes, such as a

simple increase in variance towards the present as expected

under a constant rates process [46,47] or biases in the fossil

record that prevent the sampling of large pelagic taxa. By

taking a phylogenetic approach to modelling body size evol-

ution in the fossil record, we have shown that none of these

explanations can explain the observed discrepancy between

fossil and extant mysticete body sizes and, instead, identify a

shift in evolutionary mode during the past 4.5 Myr that

resulted in the largest animals to have ever lived.

(a) Time homogeneous processes and sampling bias
cannot explain the late origin of gigantism

It is well known that an apparent trend towards size increase (or

decrease) through time could equally be the outcome of an actual

bias in the direction of size evolution or owing to an unbiased

process in which variance increases through time [20,46,47].

Although mysticete body size shows high phylogenetic signal,

consistent with a constant rates process [48], we found that a

time homogeneous evolutionary mode is unlikely for mysticetes.

Size disparity for the first 30 Myr of mysticete evolutionary his-

tory can be reasonably well approximated by simulating under

BM, but the size distribution of extant species is incompatible

with these expectations (figure 1). This discordance is empha-

sized by dramatic deviations in subclade disparity through

time plots at around 5 Ma (figure 3).

We similarly find no support for the hypothesis that

taphonomic biases have filtered the mysticete fossil record

to an extent that generates erroneous inference of a recent

mode shift. Taphonomic size biases in the terrestrial realm

typically remove small species, resulting in an over-represen-

tation of large-bodied taxa [49]. Habitat preferences play an

equally influential role in the marine realm [50] and could

bias against the preservation of large-bodied pelagic taxa,

in turn generating the disjunct body size distributions for

extant and extinct mysticetes that we recover. Live–dead

comparisons of extant cetacean communities using stranding

records suggest that the size spectrum of fossil communities

is unlikely to have been strongly filtered by taphonomic biases
[15], but our simulations show that even if such filtering did

occur, it cannot explain the support we recover for a shift in

evolutionary mode associated with Plio-Pleistocene gigantism

(electronic supplementary material). Key to understanding this

initially confusing result is the nature of the discordance

between fossil and extant body size distributions; while the lar-

gest extant mysticetes are larger than expected under a constant

rates process, the smallest extant species are also too large

(figure 1), meaning that failure to sample large fossils is only

half the problem. Although a complex suite of preservation

biases may have colluded to generate the patterns we observe,

we are unable to conceive of such a scenario at present. Taken

together, these results argue strongly against stochastic

explanations for the onset of gigantism and suggest a more

mechanistic explanation is required.
(b) Timing and mechanisms
By confidently restricting the evolutionary mode shift to the

Plio-Pleistocene, we are able to rule out many earlier propo-

sed drivers of gigantism, such as the onset of an Antarctic

Circumpolar Current, the initial evolution of bulk feeding or

pressure from macro-predators. Because the maximum size

of all described Palaeogene mysticetes is at the lower end of

the Quaternary distribution [16] and well within the confidence

envelope of a constant rates model, we also rule out compe-

tition among stem mysticete lineages [51] or other neocete

clades [8] as a significant factor in the recent evolution of excep-

tional size. In fact, appending two recently described [17,18],

large, stem mysticetes from the late Oligocene into our phylo-

geny and liberally assigning them total lengths of 10 m is

insufficient to overturn strong support for a recent origin of

gigantism (electronic supplementary material).

Although the Plio-Pleistocene witnessed a steep decline

in average global temperatures [36], we find no support for

temperature-dependent increases in macroevolutionary rate,

contrary to predictions from macroecological studies [52,53]

and macroevolutionary modelling of extant clades [37]. It is

tempting to speculate that large size may have evolved as a

directional physiological response to declining ocean tempera-

tures rather than through increased rates that serve to increase

size disparity, but the high phylogenetic signal present in our

data is inconsistent with strong selection on a narrow adaptive

peak [48,54]. What, then, explains the evolution of the largest

animals in Earth’s history?

Near-shore productivity began to increase in Late Miocene

with the onset of coastal upwelling systems [55], and it seems

no coincidence that mysticete palaeodiversity reached its

peak during this interval [14,19,56], driven dominantly by

the radiation of small-bodied and probably piscivorous [57]

Cetotheriidae. Our estimated range of times for the origin of

gigantism is more recent and we cannot rule out the hypothesis

that disrupting effects of Pleistocene glacial cycles played a pro-

minent role in driving the evolution of enormous size [14].

However, the world‘s oceans also experienced increasingly

intensified, wind-driven upwelling dynamics from the Late

Pliocene onwards [58–60]. These dynamics have been invoked

as contributing to the explosive diversification of delphinine

dolphins during the past 3.5 Myr [61] and are equally consist-

ent with the timing of the shift in evolutionary mode we

recover for mysticetes.

We hypothesize, based on an understanding of mysticete

feeding mechanics and energenetics [5], that the origin of
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gigantism lies in this Late Pliocene shift in oceanography and

concommitant changes in the intensity and the distribution of

primary productivity. Because extant mysticetes are active

bulk feeders on small-bodied prey suspended in the water

column, it is high prey densities, rather than prey abundance

per se, that increase the energetic efficiency of each feeding

event [3,62]. Indeed, extended foraging bouts on highly dense

and ephemeral resources are a defining characteristic of life

history and feeding ecology in the largest living mysticetes,

regardless of ram feeding versus lunge feeding behaviours or

phylogenetic affinity [63,64]. Prior to the onset of modern

upwelling regimes, the tropics appear to have been in a more

or less permanent El Niño state [60], a condition that today is

associated with reduced primary productivity and low den-

sities of large mysticetes [65]. Although alkenone fluxes in

sediments from the eastern equatorial Pacific suggest that pro-

ductivity fluctuated with temperature during Pleistocene

glacial cycles [59], the abrupt transition from homogeneous to

heterogeneous, upwelling driven productivity patterns pro-

vides a direct mechanism to explain the selective advantage

of large size.

The Plio-Pleistocene loss of small mysticetes (figure 1) can

also be explained by these mechanisms. Our estimated timing

for the origin of gigantism is coincident with a decline in
global mysticete diversity from 3 Ma [14] that is driven domi-

nantly by the near extinction of the diminutive Cetotheriidae

[66], and of small, ram-feeding right whales (Balaenidae).

Although intensified, wind-driven upwelling seasonally

increases productivity and prey densities, the effects are loca-

lized to continental shelf breaks. Ichthyolith records from the

South Pacific Gyre indicate simultaneous crashes in teleost and

chondrichthyan productivity during the transition from a per-

manent El Niño state to modern oceanic conditions [67],

further corroborating a redistribution of oceanic productivity.

With the evolution of larger body sizes, mysticetes would have

benefited from lower mass-specific metabolic rates to buffer

against periods of low resource availability, lower costs of

transport for efficient long distance migration between feeding

locations, and high feeding performance when these ephemeral

resources became available. At the same time, small-bodied

lineages would probably have been out competed by their

larger congeners that were more efficient at moving between

and exploiting these patchily distributed ephemeral pulses of

productivity in desert-like oligotrophic ocean ecosystems.

The lack of robustly identified Late Pliocene and Pleisto-

cene mysticete fossils of extinct or extant species represents

the final impediment to confirming our hypothesis. Deméré

et al. [40] noted that the rich Pliocene mysticete record con-

sists mostly of extinct but taxonomically uncertain species,

but considered named fossil species from Pleistocene depos-

its to be nomina dubia that most likely represent extant taxa.

Conversely, confirmed fossils of extant taxa are limited to a

handful of species [41,42] and the evolutionary history of

size in the largest living mysticetes remains enigmatic. Taxo-

nomic and phylogenetic resolution of Pleistocene mysticete

fossils is therefore a critical last step in confirming whether

the origin of gigantism was a response to intensified upwel-

ling and the associated restructuring of marine primary

productivity during the Late Pliocene, and whether this

shift in body size evolutionary dynamics occurred over a pro-

longed period or as a more or less instantaneous increase in

size over multiple lineages.
5. Conclusion
By analysing the evolution of mysticete body size using phylo-

genetic approaches and palaeontological data, we confirm that

gigantism in this clade is a surprisingly recent phenomenon.

Although filter feeding using baleen had probably evolved

by the Mid-Oligocene (25 Ma) [17,68], the ecological prey-

scapes that energetically favour gigantism only arose in the
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Plio-Pleistocene, with the onset of seasonally intensified

upwelling regimes (ca 3 Ma). As a result, we live in a time of

giants; unlike any other time in geological history, modern

oceans are rich with extremely large bodied suspension feeders

that rely on dense but patchily distributed prey resources. Pro-

jected climate-driven changes to ocean ecosystem structure,

diversity, and productivity presage a decrease in critical habitat

for large-bodied baleen whales and other suspension feeding

vertebrates [69], highlighting the ecological vulnerability of

these giants operating on an energetic knife-edge.
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