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Experimental phenotypic screens 
 
Comparisons of gene essentiality data to metabolic model predictions have been successfully used for 
model refinement previously (Joyce et al, 2006; Molina-Henares et al, 2010). In order to make additional 
comparisons to improve the E. coli reconstruction, we experimentally determined the conditional 
essentiality for a subset of iAF1260 genes, and compared these results to model predictions. Of 4325 
ORFs in the primary E. coli K-12 MG1655 genome annotation (U00096.2), 3985 have corresponding 
knockout strains in the Keio Collection of K-12 single gene knockouts (Baba et al, 2006). Of these, only 
1118 genes are present in both the Keio Collection and the iAF1260 E. coli metabolic reconstruction. 
Errors such as duplications of the deleted gene were recently discovered in the Keio Collection in 43 of 
the 1118 mutants (Yamamoto et al, 2009), further restricting this study to 1075 mutants. High-throughput 
determination of the growth phenotypes of these 1075 knockout strains was obtained using growth in 
liquid culture in 96-well plates. The use of defined media for the growth condition allowed precise 
modeling of the environment using the iAF1260 metabolic model. The growth phenotype (i.e., growth or 
no growth) of each mutant was studied in four conditions: glucose aerobic M9 minimal medium, glucose 
anaerobic M9 minimal medium, lactate aerobic M9 minimal medium, and succinate aerobic M9 minimal 
medium. Complete results of these screens can be found in Supplementary Table 1. 
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The experimental measurements of “growth” or “no growth” agreed with iAF1260 predictions in 
93.5% of cases. The results can be grouped into four categories: true positives (growth is both predicted 
and observed), true negatives (growth is neither predicted nor observed), false positives (growth was 
predicted but not observed), and false negatives (no growth was predicted but growth was nonetheless 
positively observed). Analysis of the results focused on the false positive and false negative growth 
predictions, since it is these failure modes that indicate missing knowledge and potential model 
refinements (Supplementary Figure 1). By comparing model predicted growth phenotypes to the 
measurements, errors in the reconstruction were found. We investigated these disagreements, and it was 
found that there are several possible explanations for both false negative and false positive predictions. 
Most false positives were found to be due to the presence of isozymes or alternative pathways in the 
model. Under the actual experimental conditions, these alternative genes are likely not expressed. There 
may also be latent pathways, which are known to exist but may require significant regulatory adjustments 
to be activated. False negative model predictions are most likely due to genes and pathways missing from 
the model, and thus represent knowledge gaps. 
 

A total of 66 testable model predictions (1.5%) were in the FNs category. There are several 
reasons why FNs were observed. First, the model may miscalculate essentiality because deletion of a gene 
causes violation of the FBA steady state assumption (Orth et al, 2010). The aldA (b1415), luxS (b2687), 
or pfs (b0159) genes are not necessary for producing biomass constituents, but their deletion resulted in 
FN predictions due to the model steady-state assumption. In the model these genes are needed for the 
recycling or degradation of metabolic intermediates, and are thus essential. In vivo, it may be possible that 
the concentration of these intermediates can build up without inhibiting growth or that they are degraded 
or diluted by other mechanisms. The second cause of FNs is that a gene may not carry out the reaction 
specified by the model’s GPRs. The pyrI (b4244) gene encodes the nonessential regulatory subunit of the 
aspartate carbamoyltransferase enzyme, but was incorrectly assigned in iAF1260 as being essential for 
catalytic activity in the GPR. This gene has been changed to a nonessential component of the aspartate 
carbamoyltransferase GPR in iJO1366. The third cause of FNs is that an isozyme or alternative pathway 
not present in the model may carry out the function of a deleted gene in vivo. For the case of epd (b2927), 
evidence for an isozyme, gapA (b1779), was found in the literature (Yang et al, 1998), and the GPR has 
been corrected in iJO1366. Double genetic perturbation experiments for other FN genes are expected to 
uncover novel isozymes and alternative pathways (Butland et al, 2008; Nakahigashi et al, 2009; Typas et 
al, 2008). The fourth cause of FNs is contamination of cultures. It was confirmed by PCR that FN results 
of four genes, iscS (b2530), purA (b4177), purK (b0522), and thyA (b2827), were due to cross-
contamination in the Keio Collection strain isolates used (although no evidence of contamination was 
found in the original Keio Collection (Yamamoto et al, 2009)). Therefore these genes were not considered 
in this analysis.  

 
We also identified 213 FP results. As with FN results, there are several reasons why FPs 

occurred. First, mutants may be able to grow as predicted, but grow slowly or with a poor yield and are 
inappropriately experimentally designated essential. The observation of FPs for ATP synthase and iron 
transport genes is likely due to slow growth in these mutants (Joyce et al, 2006). These slow growth 
phenotypes may be overcome through adaptive laboratory evolution (Charusanti et al, 2010; Fong & 
Palsson, 2004; Ibarra et al, 2002). The second cause of FPs is that isozymes and alternative pathways 
exist in the model but for some reason may be unable to carry sufficient flux for normal growth (i.e., the 
alternative genes are not expressed under the growth condition, encode inefficient enzymes, or are 
wrongly assigned to the GPR). The third possible cause of FPs is that genes may be needed to produce 
essential biomass components which are not included in the model’s core biomass reaction. Because a 
complete biosynthetic pathway for biotin had not yet been identified in E. coli, biotin was not included in 
the biomass reaction of iAF1260, resulting in FP growth predictions for biotin biosynthetic genes that 
were included in iAF1260. This issue has been resolved in iJO1366 through addition of the complete 
biotin synthesis pathway. 
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Supplementary Figure 1. False positive and false negative model predictions from the experimental gene 
essentiality screen. Results are categorized by the suspected reason that the model failed to accurately predict the 
phenotype. The six genes highlighted in yellow have been updated in iJO1366 partly on the basis of these results. 
The 13 false negatives that were due to media contamination were omitted from this figure, as were 41 false 
positives (associated with 32 genes) that did not have clear explanations. 
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Updating the biomass composition and growth requirements 
 
The “core” and “wild-type” biomass reactions of iAF1260 have been updated in iJO1366. These are 
reactions that drain biomass precursor compounds in experimentally determined ratios to simulate growth 
(Feist & Palsson, 2010; Varma & Palsson, 1993). Each component of a biomass reaction has the units 
mmol/gDW (milli-moles per gram cell dry weight), and flux through a biomass reaction has the units h-1, 
and is equivalent to the exponential growth rate of the organism (Thiele & Palsson, 2010). The “wild-
type” biomass reaction contains the precursors to all the typical wild-type cellular components of E. coli, 
while the “core” biomass reaction contains the precursors only to essential components. Now that the 
complete biotin synthesis pathway has been added to the reconstruction, biotin has been added to the 
biomass reactions along with the related cofactor lipoate. The [2Fe-2S] and [4Fe-4S] iron sulfur clusters 
have also been added, along with the molybdenum cofactors. Based on a recent study in which the metal 
content of E. coli was measured (Cvetkovic et al, 2010), the compositions of Cu, Mn, Zn, Ni, Mo, and Co 
in the biomass reactions have been adjusted.  
 

Growth-associated maintenance (GAM) and non-growth-associated maintenance (NGAM) are 
the amounts of ATP consumed during cell growth and by non-growth associated processes such as 
maintenance of membrane gradients, respectively. GAM is a component of the biomass reaction, while 
NGAM is manifest as a lower bound on the separate ATP draining reaction “ATPM.” These two 
parameters were recalculated for iJO1366 based on a new experimental dataset for E. coli K-12 MG1655 
growing in a glucose minimal media chemostat (Taymaz-Nikerel et al, 2010). This dataset accounts for 
cell lysis when determining growth rate, and thus includes a slightly higher growth rate and lower 
apparent maintenance requirements than in the previously used datasets (Feist et al, 2007). For GAM and 
NGAM determination, the P/O ratio of the model was constrained to 1.375, a physiologically realistic 
ratio (Noguchi et al, 2004), by enforcing a flux split through the two primary NADH dehydrogenases. 
GAM was determined to be 53.95 mmol ATP gDW-1, while NGAM was determined to be 3.15 mmol 
ATP gDW-1 h-1. It should be noted that the GAM and NGAM in a strain specific biomass reaction can 
vary given the experimental data set from which they were calculated. As such, these values should be 
based on the experimental data that most closely matches the field of use for a modeling application. For 
the complete core and wild-type biomass reactions see Supplementary Table 6. 
 
 
Knowledge index of iJO1366 genes 
 
Knowledge about individual E. coli genes is being accumulated at a rapid pace (Figure 1D). One measure 
of the accumulated knowledge of an organism is its species-knowledge-index (SKI) value (Janssen et al, 
2005). The SKI value is calculated as the total number of abstracts per species in Medline divided by the 
total number of genes in the genome, and it was shown that E. coli has a relatively large SKI value (over 
55.1) compared to other model organisms (Reed et al, 2006a).  
 

Here, the number of abstracts per gene of E. coli K-12 MG1655 in Medline was calculated to 
confirm that accumulated knowledge is well represented in the updated model. iJO1366 genes are 
enriched in number of abstracts (Supplementary Figure 2). The best studied E. coli gene is the ribosomal 
RNA gene rrsB (b3968), with 697 abstracts. The best studied gene included in iJO1366 is the maltose 
ABC transporter malE (b4034), with 209 abstracts. Each gene in iJO1366 has an average of 24.5 
abstracts, while each gene in the total set of 4490 E. coli genes has 20.4 abstracts on average, a significant 
difference (p = 2.9×10-6, t-test). The complete list of the number of abstracts per gene can be found in 
Supplementary Table 7. The high knowledge index values for these genes indicate that the accumulated 
knowledge of E. coli is well represented in iJO1366. 
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Supplementary Figure 2. Accumulated knowledge of each gene in E. coli K-12 MG1655 as determined by the 
number of abstracts in Medline containing information about each gene. The number of abstracts for each gene is 
plotted, and the genes are ordered by their total number of abstracts. All genes in iJO1366 have a red line, while 
other E. coli genes have no line. rrsB is the most studied E. coli gene, while malE is the most studied gene included 
in iJO1366. The genes in iJO1366 are among the best studied in E. coli. 
 
 
Comparison of iJO1366 to the Model SEED E. coli reconstruction 
 
Automated tools and methods for the assembly of metabolic network reconstructions are beginning to 
appear, and one of the most comprehensive new tools is the Model SEED (Henry et al, 2010). It is based 
on a strong annotation tool, RAST (Aziz et al, 2008). This framework combines the subsystem-based 
SEED genome annotations with gap-filling methods to create fully functional constraint-based metabolic 
models. In order to assess the completeness of iJO1366, it was compared to the Seed83333.1 V20.21 
model of E. coli K-12 MG1655, a model that contains 1139 genes. Specifically, the set of genes contained 
in iJO1366 was compared to the genes in the SEED model. It was found that the SEED model contains 
133 genes not contained in iJO1366, and that iJO1366 contains 362 not contained in the SEED model 
(Supplementary Table 8). The genes unique to the SEED model were investigated one at a time to 
determine if they have known metabolic functions and should be included in iJO1366. At the time of the 
initial comparison between these two models, four genes with characterized metabolic functions were 
identified in the SEED model and added to iJO1366: btuE (b1710), yggF (b2930), nudF (b3034), and 
yieG (b3714). These genes had not been found in previous model update procedures. Due to the manual 
literature searches performed and the large scope of the model, it is always possible that some known 
genes are missed, illustrating the value of quality automated tools such as Model SEED. Of the remaining 
133 genes not included in the final iJO1366 model, 68 were determined to have non-metabolic functions. 
The other 65 genes in the SEED model currently have partially or completely uncharacterized functions, 
and their predicted functions provide hypotheses that could lead to new metabolic discoveries and could 
help to fill gaps in iJO1366. 
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Comparison of iJO1366 to the EchoLocation database 
 
The iJO1366 model contains metabolites in three cellular compartments: the cytoplasm, the periplasm and 
the extracellular space. The set of metabolites that participate in a reaction can indicate the location of the 
protein that catalyzes the reaction. For example, a reaction that includes only cytoplasmic metabolites 
must be catalyzed by a protein in the cytoplasm or attached to the inner membrane. A periplasmic or outer 
membrane protein cannot catalyze this reaction. To verify the accuracy of the compartment assignments 
of the reactions in iJO1366, a comparison was made to the EchoLocation database (Horler et al, 2009). 
This database contains experimentally verified and computationally predicted subcellular locations for all 
E. coli K-12 proteins, sorted into 12 locations such as “cytoplasmic”, “inner membrane”, and “integral 
membrane protein.” The protein locations in this database were compared to the compartments of the 
metabolites associated with each gene in iJO1366 using a set of Boolean rules. These rules are listed in 
Supplementary Table 9. 

 
After testing all 1366 model genes, 170 were found to be inconsistent (Supplementary Table 9). 

The most common type of inconsistency was “cytoplasmic” or “periplasmic” proteins in EchoLocation 
that were associated with both cytoplasmic and periplasmic metabolites in iJO1366. There were 132 such 
inconsistencies. Most of these were transport reactions in iJO1366 with proteins that may be cytoplasmic 
or periplasmic subunits of multi-subunit complexes. The remaining 38 inconsistencies were investigated 
one at a time to determine whether iJO1366, EchoLocation, or both are correct. Through targeted 
literature searches, experimental evidence was found indicating that 12 of the locations are correct in 
iJO1366 but incorrect in EchoLocation. The remaining 26 proteins were found to be correct in both 
EchoLocation and iJO1366, and all involve multi-subunit transporters with individual proteins spanning 
multiple locations. After manually reconciling iJO1366 and EchoLocation, most genes were consistent. 
Interestingly, the locations that are based on experimental evidence in EchoLocation are more likely to be 
inconsistent with iJO1366 than computationally predicted locations. As most “periplasmic” proteins in 
EchoLocation are actually associated with cytoplasm to periplasm transport reactions in iJO1366, these 
discrepancies may simply be due to the definition of a “periplasmic” protein in EchoLocation. Still, the 
overall content of iJO1366 is consistent with EchoLocation, indicating that the compartments of the 
metabolites in most reactions are correct. 
 
 
Gaps and orphan reactions in the iJO1366 reconstruction 
 
The modified GapFind algorithm was used to identify all gaps in the final version of the iJO1366 
reconstruction (Supplementary Table 10). Several different types of gaps in metabolic networks are 
possible. Root no-production gaps are metabolites with consuming reactions but no producing reactions. 
Root no-consumption gaps are metabolites with producing reactions but no consuming reactions. 
Downstream gaps are metabolites with producing and consuming reactions but which are unable to be 
produced at steady state because they are downstream of a root no-production gap. Similarly, upstream 
gaps are upstream of root no-consumption gaps. The final iJO1366 reconstruction contains 48 root no-
production gaps, 63 root no-consumption gaps, 52 downstream gaps, and 69 upstream gaps 
(Supplementary Figure 3). The total number of blocked metabolites in iJO1366 is 208, with some 
metabolites occurring as more than one type of gap. In total, 11.5% of the metabolites in iJO1366 are 
blocked under all conditions due to gaps.  
 

All gaps were manually sorted into scope and knowledge gaps. Scope gaps are metabolites that 
are blocked in a model due to the limited scope of the network reconstruction, but have actual known 
producing and consuming reactions. Knowledge gaps exist because our knowledge of any metabolic 
network is incomplete. More than half of the total blocked metabolites in iJO1366 are due to scope gaps. 
The two main classes of scope gaps in the model are tRNA related and metal ion related. Like its 
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predecessor, iAF1260, iJO1366 contains charging reactions for all 20 standard amino acids as well as 
several non-standard amino acids such as N-formylmethionine and L-selenocysteine. These reactions are 
blocked because iJO1366 does not contain producing reactions for the uncharged tRNAs or consuming 
reactions for the charged tRNAs. These reactions could be used if the metabolic network is connected to a 
transcription and translation network (Thiele et al, 2009), and thus, they are included for ease of 
integration and completeness of the reconstruction. iJO1366 contains many reactions involving metal 
ions. Some metal ions, such as Fe2+, Mg2+, Ca2+, and Na+ are included in the core and wild-type biomass 
reactions, providing a consuming reaction for these metabolites. Others, such as Ag+, Hg2+, and WO4

2-, 
may be toxic to cells or may not serve any essential biological purpose. E. coli contains efflux 
transporters for such metals, but their exact uptake mechanisms are not known. Other scope gaps are due 
to metabolites that, like tRNAs, serve non-metabolic functions once they are produced. For example, E. 
coli resists osmotic stress by producing glycine betaine (Falkenberg & Strom, 1990). 

 
 Most root gaps have only one or no downstream or upstream gaps (Supplementary Figure 3B). 
This indicates that few long pathways in iJO1366 are blocked, and that most gaps have very small effects 
on the network as a whole. There are a few pathways blocked by gaps, however. For example, a set of 
nine metabolites including carnitine and carnitinyl-CoA are blocked by their downstream product γ-
butyrobetainyl-CoA. This compound is not well characterized, but has been shown to be converted to 
crotobetainyl-CoA by caiA (b0039), although the mechanism and electron acceptor for this reaction are 
unknown (Molina-Henares et al, 2010).  
 

A biologically realistic gap in E. coli K-12 metabolism occurs in the O-antigen synthesis 
pathway. An IS5 insertion in the rfb operon has left these E. coli strains without a functional 
rhamnosyltransferase, leaving rhamnosyl-N-acetylglucosamyl-undecaprenyl diphosphate without a 
producing reaction (Liu & Reeves, 1994; Rubires et al, 1997). Eleven downstream metabolites are also 
blocked by this gap, which is listed here as a scope gap. This is a real gap in the E. coli metabolic 
network, and is not due to limited knowledge.  

 
Most downstream or upstream blocked metabolites are blocked by only one root gap 

(Supplementary Figure 3C). If the missing producing or consuming reaction is identified, the downstream 
or upstream metabolite would be unblocked. There are a few cases, however, in which a metabolite has 
both upstream and downstream gaps. Mercaptopyruvate, for example, has no known producing reaction 
in E. coli. This compound is consumed in a reaction catalyzed by sseA (b2521) that produces thiocyanate 
(Colnaghi et al, 2001). This product has no known consuming reactions (Adams et al, 2002). In this 
unusual situation, neither of these compounds can be produced until both of these gaps are filled. 
Knowledge gaps occur throughout the iJO1366 metabolic network, with the largest number occurring in 
cofactor and prosthetic group metabolism (Supplementary Figure 3D). 

 
 In addition to gaps, iJO1366 contains 128 orphan reactions. One of these, the ATP maintenance 
reaction, is not a real biological reaction, and is used for modeling purposes to simulate the non-growth 
associated maintenance requirement of E. coli. The other orphan reactions are due to incomplete 
knowledge of E. coli metabolism. Orphan reactions occur in all of the metabolic systems of iJO1366 
except for ‘energy production and conversion’ and ‘amino acid metabolism’ (Supplementary Figure 3E). 
Most orphan reactions are inner membrane and inorganic ion transport reactions. One possible reason for 
this is that transport proteins tend to be more difficult to purify and assay than soluble enzymes.  
 

Another notable feature of orphan reactions is that they are often adjacent to each other in the 
iJO1366 network. Two reactions are considered adjacent if they have a common metabolite. Orphan 
reactions are adjacent to an average of 3.05 other orphans, while the average for all reactions in iJO1366 
(excluding biomass, demand, and exchange reactions) is 1.53 adjacent orphans, a significant difference (p 
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= 0.0005, t-test). This characteristic indicates that orphans are more common in certain poorly studied 
pathways and subsystems than in well-studied pathways. 

 
 

 
 
Supplementary Figure 3. Properties of the gaps and orphan reactions in iJO1366. (A) Numbers of root no-
production, root no-consumption, no-production downstream, and no-consumption upstream gaps in the network. 
(B) Histogram of the number of downstream or upstream blocked metabolites for each root gap. Most root gaps only 
result in one downstream gap. (C) The 85 knowledge gaps (no scope gaps) in iJO1366 by type of gap. “Others” 
includes special cases such as metabolites that are both root and downstream gaps. (D) The 85 knowledge gaps by 
the primary metabolic functional category (see Figure 1) of the reactions in which the blocked metabolites 
participate. (E) The 127 orphan reactions (excluding the artificial reaction ATPM) by functional category. 
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Prediction of all growth-supporting carbon, nitrogen, phosphorus, and sulfur sources 
 
The iJO1366 computational model contains exchange reactions for 324 different compounds. 285 of these 
compounds contain at least one carbon atom, 178 contain nitrogen, 64 contain phosphorus, and 28 contain 
sulfur. It is therefore possible to use iJO1366 to predict the growth capabilities of E. coli on a very wide 
range of media conditions. As a demonstration of the prediction of growth capabilities, FBA was used to 
predict growth on every possible carbon, nitrogen, phosphorus, and sulfur source, one at a time, under 
aerobic conditions (Table II and Supplementary Table 12). For each prediction, only one of the four 
element source reactions was changed, and the default sources of the other three elements were used. The 
default carbon, nitrogen, phosphorus, and sulfur sources are glucose, ammonium, inorganic phosphate, 
and inorganic sulfate, respectively. If a growth rate above zero was predicted by FBA using the core 
biomass reaction as the objective, then a source was designated as growth supporting.  
 

A total of 180 of the 285 possible carbon sources were found to be growth supporting. There are 
several reasons why a carbon containing metabolite cannot serve as a carbon source. First, not all 
extracellular compounds have transport reactions that allow them to enter the cell. Some may only have 
efflux reactions that allow them to be excreted. Second, some compounds are not connected to the central 
reactions of metabolism from which all essential biomass components are constructed. For example, 
cob(I)alamin can be converted only to vitamin B12, but not to any other biomass components. Third, 
carbon sources must also generally serve as energy sources for E. coli, so a highly oxidized compound 
such as CO2 cannot be growth supporting. Not all compounds can serve as nitrogen, phosphorus, and 
sulfur sources for similar reasons. Some compounds may serve as a source of more than one essential 
element, such as L-alanine, which can provide both carbon and nitrogen simultaneously. The potential 
growth supporting carbon, nitrogen, phosphorus, and sulfur sources were also predicted using the 
iAF1260 E. coli model. iJO1366 contains the same number of growth supporting phosphorus and sulfur 
sources, but has new sources for carbon and nitrogen. Thus, the scope of the environmental conditions 
that can be analyzed through modeling has now been increased. 
 
 
Prediction of gene essentiality 
 
The GPR associations of every reaction in iJO1366 allow this model to predict the effects of gene 
knockouts. We used FBA to predict the optimal growth rate of E. coli growing on both glucose and 
glycerol with all 1366 genes knocked out one at a time. These computational knockout screens were then 
compared to experimental screens of the entire Keio Collection (Table III and Supplementary Table 13) 
(Baba et al, 2006; Joyce et al, 2006; Yamamoto et al, 2009). Unlike the gene essentiality predictions 
presented above in Experimental phenotypic screens, the final iJO1366 model was used to make these 
predictions. 
 
There are four possible outcomes, TP, TN, FP, and FN, when one compares computationally predicted to 
experimental gene essentiality data (as discussed above Experimental phenotypic screens). FP predictions 
can be made when a model contains some unrealistic capabilities, such as pathways that are normally not 
expressed during the particular growth conditions. Because iJO1366 is a metabolic network model that 
does not contain regulatory systems, FP predictions are possible. FN cases, on the other hand, indicate 
that some realistic content such as an essential transport or enzymatic reaction may be missing from the 
model. These predictions can be used to drive model-based biological discovery (Joyce et al, 2006; Reed 
et al, 2006b). When compared to the experimental gene essentiality data, most of the predictions made by 
iJO1366 are correct, confirming its overall accuracy (91%). Still, there are 80 FPs and 39 FNs among the 
1366 predictions for growth on glucose minimal media. Predictions of growth on glycerol minimal media 
achieved similar accuracy. iJO1366 is slightly less accurate at predicting overall gene essentiality than 
iAF1260, when compared to the same datasets. This is because the 107 new genes added to this model 
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version are from less well-studied systems and pathways than the existing genes in iAF1260. Many of 
these new genes are associated with peripheral metabolic systems, while the well-studied central 
metabolic genes were already included in previous model versions. The overall accuracy of gene 
essentiality predictions for the 107 new genes is only 89%. 
 
 
Mapping iJO1366 to closely related strains 
 
To investigate the causes of inabilities to produce biomass, we identified the individual biomass 
components that each strain is unable to produce (Figure 2B). Checking the production of biomass 
components one at a time is a procedure commonly used during the assembly of metabolic 
reconstructions for microbes (Thiele & Palsson, 2010). This analysis revealed biological differences 
between the strains, identified auxotrophies, and brought to light many missing annotations in protein 
sequence databases. For example E. coli K-12 DH10B (KEGG organism code: ecd) cannot produce the 
amino acid L-leucine due to a deletion of the leuABCD operon (b0071-4) (Durfee et al, 2008). Shigella 
flexneri 301 (serotype 2a) (sfl) has a known L-methionine auxotrophy (Ahmed et al, 1988), which 
network analysis indicates is due to a lack of metA (b4013). This strain is also unable to produce S-
adenosyl-L-methionine or biotin without L-methionine. Shigella sonnei (ssn) and Shigella boydii (sbo) 
were found to be unable to produce NAD+ and NADP+. Both have a niacin auxotrophy due to lack of 
nadB (b2574). This auxotrophy has been characterized experimentally in the case of Shigella sonnei 
(Pitsch & Nakamura, 1963) and is known to be a feature of many Shigella strains. Both strains can 
grow in silico after the free exchange of Niacin is allowed.  
 

Model-predicted inconsistencies can also be used to prime experimental studies into metabolic 
differences between closely related strains. Although conservation within metabolic subsystems is strong, 
small differences can have large impacts on cellular physiology. For example, a single nucleotide change 
in E. coli O157:H7 EDL933 and E. coli O157:H7 Sakai led to altered utilization of N-acetyl-D-
galactosamine (Mukherjee et al, 2008). This mutation may have been a contributing factor in the 2006 
spinach outbreak, since this sugar is found in mucus glycoproteins in normal and diseased human colons 
(Clamp et al, 1981). Other important differences that require further investigation are components of the 
cell wall and outer membrane. For example, lipid A and its core oligosaccharide can take many different 
forms and modifications, some of which affect virulence (Raetz et al, 2007). It will be important to ensure 
that strain specific modifications are accounted for by manual curation. Looking to the future, constraint-
based models now cover a large fraction of the core genome (40-50% depending on the particular strains 
and cutoffs used in the analysis) when we take into account the recent reconstruction of transcription and 
translation in E. coli K-12 MG1655 (Thiele et al, 2009) and the fact that this subsystem is strongly 
conserved within the species. It will be interesting and informative to see what genes remain in the core 
and if their functions can be brought under the umbrella of constraint-based approaches. 
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