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Supplementary Methods 
Here we show: (1) the results of a placebo test to ensure that spurious trends are not driving our 

result; (2) details on how we calculate and extrapolate marginal effects of extreme temperatures; (3) 

details on how we estimate a distributed lag version of our regression analysis; (4) details on how we 

calculate regional growth changes from anthropogenic changes in extreme heat; (5) discussion of the 

spatial aggregation of Tx5d to subnational regions; and (6) an exploration of an alternative methodology 

using a threshold-based index of extreme heat. 

Placebo test 
To ensure that our primary regression results do not arise by chance, we implement several 

placebo tests. We do this by re-calculating the regression coefficients after repeatedly (N = 1000) 

randomizing Tx5d exposure using three different schemes: (1) across the entire sample; (2) within 

individual years; and (3) within individual regions. The results from these three randomization schemes 

are presented in Fig. S2. If spurious trends across time or space were driving our results, these tests would 

yield significant coefficients (as in our original model) despite randomizing extreme heat exposure with 

respect to growth. However, the results of these tests support our results and the soundness of our 

identification strategy: as expected, when randomizing the treatment, the effect of extreme heat on growth 

disappears (Fig. S2). These results provide confidence that spurious trends or a flawed identification 

strategy are not driving our results. 

Calculating and extrapolating marginal effects 
Using the main regression equation (main text Eq. 1), we differentiate g with respect to each variable. 

This allows us to calculate marginal effects of each variable on growth. The marginal growth 

effect of an additional degree in Tx5d (p.p. per °C) in a given region (i.e., !"!"
!#$!"

)	depends on that region’s 

annual average temperature: 
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The marginal effect of an additional degree of temperature variability (V, p.p. per °C) in a given 

region depends on the annual cycle, A: 
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The annual mean temperature term (T) is interacted both with itself (i.e, T2) and with Tx5d. The 

squared temperature term is not statistically significant (Table S1), so we calculate the marginal effect of 

an additional degree in the annual mean temperature (p.p. per °C) using only the interaction with Tx5d: 

∂𝑔%&
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We present the marginal effects of extreme heat, annual mean temperature, and temperature 

variability in Supplementary Figure 5. We standardize all marginal effects by their respective within-

region standard deviations. For example, the average region experiences variability in Tx5d of 

approximately 1.3 °C from year to year, so the effect of realistic variation in Tx5d is 1.3 times larger than 

would be inferred from the marginal effect of a 1 °C change. And because a 1 °C change has a different 

physical interpretation if it is in extreme heat, average temperatures, or temperature variability, 

standardizing the marginal effects of each variable allows us to make fair comparisons between them 

(Fig. S5). 

Not all regions have GDP per capita (GDPpc) data; the estimation sample does not include most 

regions in Africa, some regions in South America, and other missing areas. However, climate data is 

available for these regions. To estimate the marginal effects for all regions, we calculate each region's 

effects based on its long-term average temperature. The primary regions of extrapolation are in the tropics 

(e.g., sub-Saharan Africa), which are areas of high temperatures. The estimation sample includes annual 

mean temperatures as high as 30 °C, so most of the regions for which we calculate marginal effects are 

within the range covered by the estimation sample.  

Distributed lag model estimation 

To determine whether the effects of extreme temperatures persist beyond the year in which they 

occur, we estimate a distributed lag version of our main regression specification. This model adds lags to 

each independent variable to account for potential economic recovery behavior after an extreme heat 

event. If climate shocks fall only on the level of output, the year after an event will see increased growth 

as economies rebound to their pre-heat-wave income trajectory, but if climate shocks affect growth, then 

future years will not rebound. Hence, if the lagged terms in a regression have the opposite sign of the 

contemporaneous effect, the cumulative effect will converge to zero, characteristic of level effects. On the 

other hand, if the lagged terms are zero or have the same sign as the contemporaneous effect, growth 

effects are identified. 



The distributed lag model is specified as follows, where the cumulative effect is the original 

model summed across the number of lags L considered: 
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As in Eqn. 1 (main text), T represents annual mean temperature, Tx represents Tx5d, V represents 

daily-scale variability, A represents the annual cycle, and P represents precipitation.  The coefficient of 

interest shown in Fig. 3 in the main is the sum of the coefficients from lags L=0 to L=j: 

Θ%- =34β)' + β)( ∗ 𝑇%(&+))7
-

)./

(5) 

Because each region has a unique temperature, each region has a unique cumulative marginal 

effect. In our analysis, we set j=5, meaning we add 5 lags (i.e., years) to the contemporaneous effect and 

estimate the effect of a heat wave on each year for 6 years in total. In Fig. 3, we show the cumulative 

coefficients for two example temperatures as the effect is accumulated over the 6 years. Other analyses 

occasionally include up to 15 or 20 lags, but because some regions in our sample have 10 or fewer years 

of data, we only include 5 lags in our model to avoid overfitting. This choice is defensible, as the 

cumulative marginal effects rebound to zero within two to three years of the extreme heat event (Fig. 3A). 

Calculating regional growth changes from anthropogenic changes to extreme heat 

Combining our empirical analysis with differences in the CMIP6 historical and natural 

simulations (Table S3) allows us to calculate the effect of anthropogenic changes in extreme heat on 

regional growth and income over the historical period. We first splice each model’s historical simulation, 

which ends in 2014, with the first five years of its ssp245 simulation, extending the simulations to 2020 to 

match the natural simulations, which end in 2020. Our choice of the ssp245 scenario follows the CMIP6 

experimental protocol. 

We then calculate the difference in annual population-weighted region-mean Tx5d between the 

historical and natural simulations, and we smooth this difference with a centered fifteen-year running 

mean to isolate the secular effect of anthropogenic warming. We also perform this analysis for the annual 

mean temperature in each model and region. We use an analysis period of 1992-2013 to match the 

availability of economic and nighttime luminosity data, so we begin with climate model data over 1985-

2020. The fifteen-year centered smoothing means that the value for 2010, for example, in the resulting 

1992-2013 climate model timeseries represents the average from 2003 to 2017. Using the unsmoothed 

difference may result in spurious differences on interannual timescales from, for example, random El 



Niño events that occur in one simulation, but not another, that are not attributable to anthropogenic 

forcing.  

Because the natural simulations end in 2020—and there is no ssp245-type simulation that could 

be used to extend the natural simulations—fifteen years is the longest smoothing window that allows our 

estimates to use a centered window rather than a right-oriented window. Using a longer period may be 

useful for eliminating multidecadal natural climate variability, but it comes at the sacrifice of robustly 

capturing anthropogenic warming, since using a right-oriented window requires averaging years earlier 

than the year in question but not later than that year. 

We then subtract this difference from each region's observed Tx5d time series (TxO) to generate 

counterfactual Tx5d timeseries (TxCF) that would have occurred absent anthropogenic greenhouse gas and 

aerosol emissions. Benchmarking the counterfactual timeseries to the observed time series both implicitly 

bias-corrects the model output and imputes realistic interannual variability to the smoothed climate model 

timeseries. We perform the same subtraction for annual mean temperature as well, yielding time series of 

observed (TO) and counterfactual (TCF) annual mean temperature.  

We then compare the growth effects of Tx5d in the observed and counterfactual climates to 

calculate the difference in growth due to anthropogenic changes in extreme heat. We use the coefficients 

from the distributed lag model (Eqn. 4) in this procedure, allowing us to capture the full dynamics of the 

effect over time. The coefficients are derived in Eqn. 4 by estimating the effect of past extreme heat on 

current growth but are mathematically equivalent to the effect of current extreme heat on future growth. 

That is, b3 is estimated as the effect of extreme heat at time t-3 on growth at time t, which is equivalent to 

the effect of extreme heat at time t on growth at time t+3. This equivalency allows us to develop impulse-

response functions that describe the response of future growth to a change in extreme heat at a given time 

(e.g., Fig. 3). Therefore, if anthropogenic forcing has altered Tx5d in year t and region i, the effect of that 

change on growth from time t to time t+L is calculated as: 

Δ𝑔&0) = [β)'𝑇𝑥&12 + β)(𝑇𝑥&12 ∗ 𝑇&12] − [β)'𝑇𝑥&3 + β)(𝑇𝑥&3 ∗ 𝑇&3] (6) 

This analytical structure allows changes in Tx5d to affect both contemporaneous and future 

growth, incorporating the intensification and rebound effects seen in Figure 3A in the main. We use the b 

coefficients from the distributed lag model, with one modification: we force the coefficients to sum to 

zero in year 3, given that the effects in year 3 are indistinguishable from zero (Fig. 3). This yields a Dg 

value that accumulates over years 0, 1, and 2, and then converges to 0 in year 3. We note that our 

methodology yields positive Dg values for regions harmed by warming, as they would have grown faster 

in the absence of warming (though we flip the sign of Dg in our presentation in Fig. 3, so negative values 

indicate damage from warming, for visualization purposes). 



We repeat this analysis for each year, yielding timeseries of Dg values where each value is the 

combined influence of the Tx5d effects from that year and the three years before it. We perform this 

calculation for all regions, since Tx5d and temperature data are available even where GDPpc data is not. 

We perform this analysis over 1992-2013, as opposed to the entire sample period, to overlap with the 

period of the nightlights data used to infer regional GDPpc (Methods).  

Note that we use both observed and counterfactual annual mean temperature in this calculation 

(TO and TCF). As a result, our damages calculations incorporate both changes in Tx5d values themselves 

as well as changes in the sensitivity of growth to Tx5d (Fig. 1). Fig. S10 shows a version of our analysis 

where historical average temperatures are held at their observed values. 

Spatial aggregation of Tx5d 

We calculate Tx5d values at each grid cell before averaging across regions. This procedure may 

average Tx5d values from different parts of the year if, for example, one grid cell in a region experiences 

their hottest heat wave in June and another experiences their hottest heat wave in August. However, this 

mismatch should not affect our results. Just as GDP aggregates across multiple sectors and time periods to 

generate a summary measure of economic activity, aggregating across multiple events or time periods is a 

standard procedure to calculate summary measures of exposure to climate hazards. Our results should not 

be interpreted as measuring the impact of a specific heat wave in each region, but instead as the 

temperature of the hottest heat wave experienced by the average grid cell in each region.  

To explore the issue of spatial aggregation further, we examine the day of year of the hottest five-

day period at each grid cell (Fig. S13). The timing of the Tx5d event varies across large spatial scales 

rather than fine scales; for example, the northern part of sub-Saharan Africa generally experiences it in 

February and March, at the end of Southern Hemisphere summer, as the Intertropical Convergence Zone 

has moved south and dry conditions prevail north of the equator (Fig. S13A). We quantify this spatial 

variation by calculating the within-region standard deviation in Tx5d timing for all regions in the 

Northern Hemisphere (Fig. S13B). (Before performing this calculation, we shift the year in the Southern 

Hemisphere so day 0 corresponds to July 1 and day 365 corresponds to June 30 of the following year.) 

Regions generally experience variation in Tx5d timing of 1-2 weeks, with 74% of regions experiencing 

spatial variation of less than 14 days. This time scale is consistent with the spatial and temporal scales of 

the synoptic circulation anomalies that drive heat waves. 

Effect of extreme degree days on economic growth 

Our main analysis uses Tx5d because it is a simple and transparent metric with a straightforward 

physical interpretation. Alternative approaches to quantifying extreme heat use percentile-based metrics 



that allow researchers to quantify both the magnitude and frequency of extreme heat exposure. Here we 

conduct preliminary analysis using a similar metric to test the sensitivity of our results to this choice.  

We define an “extreme degree days” (EDDs) metric as accumulated exposure to temperatures 

above thresholds defined as location- and month-specific temperature thresholds. Using 1979-2016 as the 

reference period, we calculate the 95th percentile temperature value separately for each month and each 

grid cell in the ERA5 daily maximum temperature (Tx) data. We then calculate the difference of Tx on 

each day of the year and grid point from this 95th-percentile temperature threshold, setting negative 

differences to zero. Annual EDDs are then calculated as the sum of these Tx differences over each year, 

limiting the summation to threshold exceedances of at least three consecutive days. This choice ensures 

that our analysis measures damaging multi-day periods of extreme temperatures.  

We then substitute this EDDs metric for the Tx5d metric in our main regression equation (main 

text Eqn. 1) and re-estimate the regression with bootstrapping, as in our main analysis. The results are 

similar to those using Tx5d (Fig. S14): Extreme heat benefits cool regions and damages warm ones. The 

magnitude of the effect is similar, though slightly smaller, to Tx5d. In Brazil, where the average region 

has an annual mean temperature of 23.8 °C, a 1-s.d. increase in Tx5d intensity decreases growth by 0.63 

p.p., whereas a 1-s.d. increase in EDDs decreases growth by 0.6 p.p. The similarity in magnitudes of the

two effects suggests that the majority of the effect of extreme heat is felt during the few warmest days of

the year (i.e., those days captured by Tx5d).

More broadly, these results provide confidence that percentile-based indices return similar results 

as simpler indices such as Tx5d. However, they require a series of arbitrary choices by researchers: 

Which percentile or absolute threshold to use, which time period to reference such a threshold to, which 

seasons to aggregate over, whether regions “recover” between periods of extreme heat within the same 

year, and whether the threshold changes with warming. The combined effect of these choices is that, 

while useful in capturing both the frequency and intensity of extreme heat, metrics such as EDDs can be 

complex to interpret and sensitive to the methodological choices made. We choose to maintain the 

simpler and more transparent Tx5d metric in our analysis while noting that threshold-based indices may 

be promising areas for future work. Additionally, because global warming will likely increase the 

frequency, magnitude, and duration of heat waves, incorporating these additional factors would likely 

produce more severe damages due to anthropogenic warming, so our main estimates can be viewed as 

conservative.  



Supplementary Tables and Figures 

Supplementary Table 1: Effects of extreme heat, average annual temperature, temperature variability, 

and precipitation on economic growth in percentage points (p.p.). Year and region fixed effects are 

included in all models. Original coefficients are multiplied by 100 to aid readability, so they are directly 

interpretable as percentage points. Column (1) shows our preferred model, column (2) adds a squared 

precipitation term, column (3) clusters standard errors at the country level instead of the regional level, 

and column (4) adds region-specific linear growth trends. 



Supplementary Table 2: Effect of extreme heat on economic growth using different measures of effect 

heterogeneity. T refers to annual average temperature and T-bar refers to long-term climatological 

average temperature. PDSI refers to the Palmer Drought Severity Index. Precipitation, temperature 

variability, and the interaction between variability and the annual cycle are included in all models but not 

shown. Region and year fixed effects are included in all models. All standard errors clustered at the 

region level. Original coefficients are multiplied by 100 to aid readability, so they are directly 

interpretable as percentage points. 



Model Modeling center Realizations 

ACCESS-CM2 Commonwealth Scientific and Industrial Research Organization 3 

ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organization 3 

CanESM5 Canadian Centre for Climate Modelling and Analysis 10 

CNRM-CM6-1 Centre National de Recherches Meteorologiques/Centre 

Europeen de Recherche et Formation Avancee en Calcul 

Scientifique 

1 

FGOALS-g3 State Key Laboratory for Numerical Modeling for Atmospheric 

Science and Geophysical Fluid Dynamics 

1 

IPSL-CM6A-LR Institut Pierre-Simon Laplace 5 

MIROC6 International Centre for Earth Simulation 50 

MRI-ESM2-0 Meterorological Research Institute 5 

NorESM2-LM Norwegian Climate Centre 3 

Supplementary Table 3: CMIP6 models and number of realizations used in the analysis. Daily 

maximum temperature from the historical, historical-nat, and ssp245 experiments are used from all 

models. 

Supplementary Table 4: Parameters used in predicting regional GDPpc (main text Eqn. 2). Standard 

errors are clustered at the country level to account for spatiotemporal autocorrelation in regional growth. 



Supplementary Figure 1: Analytical framework. (1) We first estimate the effect of Tx5d intensity on 

economic growth using ERA5 reanalysis data and subnational growth observations (see Fig. 1 and Fig. 

3). (2) In parallel, we estimate the effect of historical anthropogenic climate change on Tx5d to date using 

CMIP6 historical and natural simulations (see Fig. 2). (3) We then calculate regional growth changes by 

applying the econometric regression coefficients to the observed and counterfactual Tx5d data. Then, 

after (4) downscaling country income to subnational income (see Fig. S8 and Fig. S9), we (5) apply the 

growth change values to regional GDPpc time series to calculate observed and counterfactual GDP in 

each region, and thus economic damage from climate change (see Fig. 4). 

Estimate observed economic 
effect of Tx5d (Fig. 1, Fig. 3)

Generate counterfactual Tx5d 
from climate models (Fig. 2)

Calculate growth change 
from warming in every region

Key data: ERA5 observed and 
CMIP6 historical/natural Tx5d

Key data: ERA5 observed Tx5d, 
subnational growth data

Downscale country GDPpc to 
regional GDPpc (Fig. S8, S9)

Key data: World Bank country 
GDPpc, subnational regional GDPpc

Calculate GDP change from 
warming in every region (Fig. 4)

(1)

(2)

(3)

(4)

(5)



Supplementary Figure 2: Marginal effects of extremes from randomization tests. Example marginal 

effects of extreme temperatures on economic growth when the annual average temperature is 5 °C (blue) 

and 25 °C (red). The first two coefficients show the mean and 95% confidence intervals from the original 

model, second two coefficients show the result after Tx5d exposure is randomized across the entire 

sample, third two coefficients show the result after Tx5d exposure is randomized within years, and last 

two coefficients show the result after Tx5d exposure is randomized within regions. 



Supplementary Figure 3: Marginal effects for multiple metrics of extreme heat. Each plot shows the 

effect of extreme heat on regional economic growth, in p.p. per s.d., as a function of annual mean 

temperature. Plot axes are identical across all plots. “Txx” refers to the daily maximum temperature on 

the hottest day of the year, “Tx3d” refers to the average daily maximum temperature of the hottest 3-day 

span (and other multi-day metrics are defined accordingly), and “Tmonx” refers to the average 

temperature of the hottest month of the year. Solid red lines shows the mean and shading shows the 95% 

confidence interval across 1000 bootstrap iterations (Methods). “Adj R2” denotes the adjusted R2 value, 

“Inflection pt” denotes the average point at which the effect becomes negative across all bootstraps, and 

“Slope” denotes the average value of the interaction coefficient (i.e., decrease in marginal effect with 

increasing temperature) across all bootstraps. 



Supplementary Figure 4: Explanatory power of average temperatures for temperature extremes. 

A) Relationship between annual mean temperature and Tx5d, using the raw values from the full sample.

B) Relationship between annual mean temperature and Tx5d when both values are calculated as

deviations from regional means as would be in the estimation of a fixed effects model. R2 in both figures

refers to the R2 value from a simple linear regression of Tx5d onto annual average temperature.

Percentages in panel B denote the percent of the sample that falls into each quadrant.



Supplementary Figure 5: Marginal effects of extreme temperatures, mean temperatures, and 

temperature variability. A-C) Marginal effects across annual mean temperatures for both extreme (A) 

and annual mean temperatures (B), and across the mean annual cycle for variability (C). Solid lines 

denote means and shading denotes 95% confidence intervals from bootstrap resampling (Methods). 

Average temperature effects are not smooth because they depend on both the annual mean temperature 

and Tx5d, so we calculate these effects using the average Tx5d values experienced at each annual mean 

temperature value (Methods). D-E) Average marginal effects in each region for extremes (D), averages 

(E), and variability (F). All marginal effects are standardized by the average within-region standard 

deviation of the relevant variable. 



Supplementary Figure 6: Contemporaneous and cumulative effects of extreme temperatures across 

a range of annual mean temperatures. Red line shows the contemporaneous marginal effect and black 

line shows the cumulative marginal effect when 5 lagged years are added to the regression model. In both 

cases, the line shows the mean and the shading shows the 95% confidence intervals from bootstrap 

resampling, as in the main analysis. 

Supplementary Fig. 7: Distributed lag model results using autoregressive (AR) models. A) 

Cumulative 5-lag marginal effect of Tx5d increases (p.p. per s.d.) across a range of annual mean 

temperatures, as in the main analysis (not including an AR term). Black line shows the mean across 1000 

bootstrap samples, bootstrapping by region as in the main analysis, shading shows the 95% confidence 

intervals (CI) when bootstrapping by region, and dashed lines show the 95% CI when bootstrapping by 

country. B) As in (A), but using an AR(1) distributed lag model, meaning that one lag of growth is added 

to the right-hand-side of the equation. C) As in (A), but using an AR(4) distributed lag model.    



Supplementary Figure 8: Prediction of regional log GDPpc. Predicted regional log GDPpc 

againstactual log GDPpc when Kenya and Uzbekistan are included (A) and excluded (B). Predicted data 

is generated using a statistical model that includes country GDPpc and regional nighttime luminosity.  

Supplementary Figure 9: Cross-validation of regional GDPpc prediction. Out-of-sample prediction 

error for log regional GDPpc from 10-fold cross-validation using a series of statistical models that include 

the parameters described in the legend. Prediction error is quantified using the root mean squared error as 

a percent of average regional log GDPpc. Red bar has the lowest out-of-sample prediction error. Bar 

heights denote means of prediction error across 10 folds and black error bars denote the mean plus or 

minus the standard deviation across 10 folds. 



Supplementary Figure 10: Damages with constant annual mean temperature. As in Fig. 4A, but 

holding annual mean temperatures constant at their observed values, so the marginal effect of extremes 

does not change with warming. 

Supplementary Figure 11: Historical economic damages from changes in all temperature variables. 

A-D) Average change in GDP per capita due to anthropogenic changes in extreme heat intensity (A),

mean temperatures (B), temperature variability (C), and the combined effects of all three variables (D).

Missing data in (C) and (D) is because variability data is only available within the estimation sample.

Hatched regions in (A) and (B) match the regions of missing data in (C) and (D).



Supplementary Figure 12: Distributed lag regression estimates for average temperature and 

temperature variability. A) Marginal effect of a 1-s.d. increase in the annual mean temperature on 

regional economic growth. The contemporaneous response is shown in red and the cumulative 5-lag 

response is shown in black. B) Marginal effect of a 1-s.d. increase in daily-scale temperature variability 

on regional economic growth. The contemporaneous response is shown in red and the cumulative 4-lag 

response is shown in black. We choose 4 lags for panel (B) because it is the first year in which the 

response is indistinguishable from zero. In both panels, solid lines show average and shading shows the 

95% confidence interval from bootstrap resampling (Methods). 



Supplementary Figure 13: Variation in Tx5d timing. A) Average month in which the center day of the 

hottest five-day period falls for each grid cell. B) Average within-region spatial standard deviation of the 

day of year on which the hottest five-day period is centered. A value of 10, for example, means that in an 

average year, the grid cells in a given region experience variation of 10 days in the timing of their hottest 

five-day periods. 



Supplementary Figure 14: Effect of extreme degree days on economic growth. Effect of increases in 

extreme degrees on economic growth in percentage points per standard deviation. Extreme degree days 

are calculated as cumulative annual temperature exposure above location- and month-specific percentile 

thresholds (see Supplementary Methods). Solid line shows the mean and shading shows the 95% 

confidence interval using bootstrap resampling, as in the main analysis.  
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