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Abstract

One of the reasons for the popularity of meta-analysis is the notion that these analyses will possess 

more power to detect effects than individual studies. This is inevitably the case under a fixed-effect 

model. However, the inclusion of the between-study variance in the random-effects model, and the 

need to estimate this parameter, can have unfortunate implications for this power. We develop 

methods for assessing the power of random-effects meta-analyses, and the average power of the 

individual studies that contribute to meta-analyses, so that these powers can be compared. In 

addition to deriving new analytical results and methods, we apply our methods to 1991 meta-

analyses taken from the Cochrane Database of Systematic Reviews to retrospectively calculate 

their powers. We find that, in practice, 5 or more studies are needed to reasonably consistently 

achieve powers from random-effects meta-analyses that are greater than the studies that contribute 

to them. Not only is statistical inference under the random-effects model challenging when there 

are very few studies but also less worthwhile in such cases. The assumption that meta-analysis will 

result in an increase in power is challenged by our findings.

Keywords

cochrane; empirical evaluation; random-effects meta-analysis; power calculations

1 Introduction

Meta-analysis is now a very commonly used statistical tool. There are many motivations for 

including meta-analyses in systematic reviews. The Cochrane Handbook1 (their section 

9.1.3) gives 4 reasons for doing so: (1) to increase power, (2) to improve precision, (3) to 

answer questions not posed by the individual studies, and (4) to settle controversies or 

generate new hypotheses. The focus here is on the first of these reasons, namely, to increase 

power. To quote directly from the Cochrane Handbook, “Many individual studies are too 

small to detect small effects, but when several are combined there is a higher chance of 

detecting an effect.” This statement furthers our belief that there is a commonly held implicit 

assumption that meta-analysis necessarily provides a way to increase statistical power and so 

detect effects of interest. In this paper, we will challenge this assumption. This issue should 

be of interest to applied analysts regardless of their preferences concerning whether to 
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present confidence intervals or results from hypothesis tests. The former is often 

encouraged, and we would align ourselves with those who emphasise estimation over 

testing. Due to the connection between hypothesis testing and confidence intervals however, 

a significant hypothesis test result is equivalent to a confidence interval that excludes the 

null. All our results that follow are therefore immediately applicable to those who prefer to 

present confidence intervals because they can frame the findings of whether or not 

confidence intervals contain the null, and so whether they are able to detect an effect.

The power of a hypothesis test is the probability that the null hypothesis is rejected when it 

is false. Bayesian methods would be needed to instead calculate the probability that the null 

hypothesis is false, but here we focus on classical methods. Power analysis for meta-analysis 

is a sufficiently important topic to warrant an entire chapter devoted to it in the introductory 

text by Borenstein et al2 (their chapter 29). The methods for power analysis that we develop 

below are of this conventional type and do not attempt to allow for multiple testing within 

the same review3 or sequential testing in updated reviews.4 We will compare the power of 

the individual studies and the power of the meta-analysis to which they contribute, because 

both types of power are important considerations, which impact on each other in practice.5,6 

The planning of future studies may be based on the power or precision of meta-analysis 

results.5,7,8

Our other main focus is on the use of random-effects meta-analyses. The random-effects 

model9–12 relaxes the strong, and usually difficult to defend, assumption made by the fixed-

effect model that the studies estimate the same true effect. The random-effects model 

introduces two reasons for doubting that the resulting meta-analyses will possess more 

power than the individual studies, both of which are directly related to the between-study 

variance. The first reason is that, compared to the fixed-effect model, the need to estimate an 

additional parameter in random-effects meta-analyses could result in power loss even when 

there is no between-study heterogeneity; in general, power is lost when introducing further 

parameters to a statistical model. However, a more obvious concern is that if the between-

study heterogeneity is very large then the variation in the study estimates could be very 

considerable; by (albeit, correctly) allowing for this variation, the standard error of the 

pooled estimate could then be very large. If this occurs, then the corresponding hypothesis 

test will possess very little power.

Others have previously discussed power calculations under the random-effects model.13,14 

Hedges and Pigott (2001)15 also discuss how the unknown between-study variance 

complicates power analysis in the random-effects setting. Although these methods are 

directly related to our new methods, and will also be used below, a key distinction between 

our new methods and most previous work is that we develop methods for evaluating the 

power whilst taking into account the uncertainty in the estimated between-study variance.

We should however be clear from the outset that meta-analysis and study specific hypothesis 

tests involve testing different types of hypotheses: in a meta-analysis, we test whether or not 

the average effect is a particular value (for example zero), and for individual studies we test 

whether or not the true study specific treatment effect is a particular value. The distinction 

between these 2 types of hypotheses is especially clear when using the random-effects 
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model, where we assume that the true treatment effects differ across studies. Whilst 

recognising that the meta-analysis and study specific hypothesis tests differ in this way, we 

will still compare the power of these two types of tests. We should also recognise that the 

study-specific and fixed-effect model hypothesis tests possess, under the assumptions that 

these methods make, the correct significance level. However, the conventional random-

effects model hypothesis test only retains the nominal significance level approximately. To 

more fairly compare the power of different hypothesis tests, we should use the same actual 

(and not just the nominal) significance level throughout, and this is only approximately the 

case here. Some of the power of the conventional random-effects model hypothesis test is 

therefore an artifact of the approximate nature of the methods used.

One motivation for developing methods for power analysis under the random-effects model 

is so that we can retrospectively determine the powers of the random-effects meta-analyses 

from a large sample of meta-analyses from Cochrane. We therefore calculate what is 

sometimes referred to as the “observed power” in this empirical investigation. Then, by 

comparing the power of these meta-analyses to the average power of the studies that 

contribute to them, we can empirically investigate the validity of the notion that random-

effects meta-analyses result in an increase in power. This empirical investigation of a large 

number of random-effects meta-analyses is one important contribution of this paper. The 

new Monte Carlo method that we develop for this purpose is another important contribution. 

Retrospective power calculations have some value in practice because they have the 

potential to explain why effects were not detected. For example, a systematic reviewer might 

be disappointed or surprised not to detect a particular effect, but this is likely to be mitigated 

or explained by a calculation that reveals that the power was in any case very low. Although 

low power also manifests itself as wide confidence intervals, a power calculation provides a 

much more direct statement about the difficulty in detecting effects than a confidence 

interval. However this should not be taken to suggest that the usual statistical inferences, 

made for example by using confidence intervals, are in any sense deficient because they do 

not involve power calculations. Readers may also be able to suggest other reasons why 

retrospective power calculations could be of interest.

Despite this, we would not advocate the routine use of retrospective power calculations in 

meta-analysis, rather they are likely to be useful in some instances to clearly convey the 

difficulty in detecting particular effects. In our empirical investigation, we retrospectively 

investigate the powers of random-effects meta-analyses so that these powers can be 

compared to study specific powers. Our retrospective power calculations are performed to 

answer the more general question of whether or not random-effects meta-analyses usually 

provide an increase in power, rather than to retrospectively investigate the power for any 

specific meta-analysis. Those who might advocate the routine use of retrospective power 

calculations should examine the arguments made by Hoenig and Heisey16 and, in our 

opinion, consider amending their position.

Another motivation is to develop a method for power analysis that is most suitable for those 

who wish to perform such an analysis at the planning stage. As Borenstein et al2 point out, 

ideally “a power analysis should be performed when the review is being planned, and not 

after the review has been completed.” However, determining suitable information for a 
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power calculation at the planning stage of a meta-analysis or systematic review is 

challenging, because the power depends on quantities like the number and size of studies, 

which the systematic reviewer cannot directly control (although as Borenstein et al point out, 

we could modify the inclusion criterion to include more or fewer studies). We therefore 

develop a method that facilitates a meaningful power calculation for those planning reviews 

and that also allows for the uncertainty in the estimation of the between-study variance. This 

is another important contribution of this paper. Power calculations are especially useful at 

this early stage, because they can be used to inform systematic reviewers about important 

practical issues such as whether they should modify the inclusion criterion to accommodate 

more studies, or wait until more studies are available, and so on. We strongly encourage 

power calculations at the planning stage for this reason, and suggest that these could be 

included in protocols.

The rest of the paper is set out as follows. In section 2, we explain how to derive the power 

of the studies that contribute to a meta-analysis, so that the study specific powers can 

subsequently be computed and compared to those from a meta-analysis that combines these 

studies. In section 3, we examine the implications for the fixed-effect model, where we 

quickly find that a fixed-effect meta-analysis necessarily results in an increase in power. In 

section 4, we examine the random-effects model and propose a new way to derive the 

average study specific power and 3 ways to derive the power of random-effects meta-

analyses. In section 5, we assess the performance of the methods proposed in section 4. In 

section 6, we explore the study specific and meta-analysis powers empirically in a large 

database from Cochrane. Together the findings in sections 5 and 6 enable us to reach some 

important conclusions that we discuss in section 7.

2 The Power of the Individual Studies that Contributes to the Meta-

Analysis

In this section, we derive the power of the individual studies that contribute to the meta-

analysis. At this stage, we make no use of meta-analysis methodology, because we make no 

assumptions about how the true treatment effects for each study relate to each other.

We let μi denote the true effect in study i and let k denotes the number of studies. We let Yi 

denotes this study’s estimate of μi and let σi denotes the corresponding standard error. These 

standard errors are usually estimated in practice but treated as if fixed and known in analysis. 

We suppress the fact that the within-study standard errors are estimated prior to performing 

the meta-analysis, and so write σi instead of σ̂i. We also use normal within-study 

approximations  as is conventional in meta-analysis and common when 

analysing data from individual trials. We assume that 2-tailed hypothesis tests are used 

throughout. We make no attempt to distinguish “accepting the null hypothesis” and “not 

rejecting the null hypothesis” and other more subtle issues related to the interpretation of 

hypothesis and significance testing.

From the standard textbook theory of hypothesis testing using a normally distributed 

estimate with known standard error (eg, Matthews and Farewell,17 their chapter 8), the test 
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statistic H0 : μi = μ0 versus H1 : μi ≠ μ0 in the ith study is given by Zi = (Yi − μ0)/σi; typically 

we set μ0 = 0 to test for no effect. Under the null hypothesis, H0 : μi = μ0, Zi ∼ N(0, 1). 

Under the alternative hypothesis Zi ∼ N(δi/σi, 1), where δi = μi − μ0. The null hypothesis is 

rejected using a 2-tailed test by the ith study if |Zi| ≥ Za, and this hypothesis is accepted if |Zi| 

< Za, where Za is a suitable critical value from a standard normal distribution; Za = 1.96 

gives the conventional 5% significance level that we will assume is used in our 

investigations below. The probability of accepting the null hypothesis is therefore equal to 

Φ(Za−δi/σi)−Φ(−Za−δi/σi), where Φ(·) is the standard normal cumulative distribution 

function. Hence, the power is given by the probability of correctly rejecting the null 

hypothesis when it is false, which is

(1)

The power varies from one study to the next, depending on the study specific δi and σi. 

Large powers are obtained for studies, where δi is of large magnitude, and σi is small. This 

reflects the intuition that we will be likely to detect effects when they are large and/or when 

studies provide a large amount of information.

2.1 The probability of rejecting the null hypothesis and inferring the correct directional 
effect

It may also be of interest to evaluate the probability of rejecting the null hypothesis and 

inferring that μi > μ0 (that is, observing Yi > μ0), so that the probability of detecting an effect 

in the correct direction can be calculated. This type of calculation is also necessary for 

computing the power of 1-tailed tests. This probability is given by

All the other methods for calculating powers below are also easily modified to calculate the 

probability of rejecting the null hypothesis and also inferring a particular directional effect. 

Hence, we do not give further explicit details of how to modify our methods in this way. 

Those who would prefer not to include the “type III error” (correctly rejecting the null 

hypothesis but inferring the wrong directional effect) in the power are particularly likely to 

modify the methods in this manner. We welcome the use of this and other modifications that 

analysts might wish to adopt; for example, it has been proposed to replace Za with an 

appropriate quantile from a t distribution when performing meta-analyses, and this is another 

easy and obvious way to modify some of the methods that follow. We however allow the 

“type III error” to contribute to the power because this is so ubiquitous in the established 

literature that we discuss in the introduction that we do not attempt to challenge this 

convention here. However, we are sympathetic to the position that the “type III error” should 

not be included in the power.
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3 The Fixed-Effect Model

The power for each individual study is easily calculated as explained in section 2. We now 

examine the power of meta-analyses that combine such studies, so that the study specific and 

the meta-analysis powers can be compared. The fixed-effect (or common-effect) model 

assumes that there is no between-study variation, so that μi = μ, and δi = δ = μ−μ0 for all i. 

This means that we assume that  and calculating powers of hypothesis tests 

are straightforward.

3.1 The power of the individual studies

Upon substituting δi = δ, in Equation 1, the study-specific powers under the fixed-effect 

model are

(2)

The powers of the studies in Equation 2 are not identical because the σi differ. To obtain an 

average study specific power, we approximate the distribution of the σi with their empirical 

distribution. Hence, the average study specific power is

(3)

where σ is a vector containing the σi. We present the average study specific power as a 

useful descriptive statistic that describes an important feature of the evidence base. Other 

summaries of the empirical distribution of the study specific powers, or indeed the meta-

analysis powers below, could also be presented as descriptive statistics.

3.2 The power of fixed-effect meta-analyses

Under the assumption of a fixed-effect model, there is a single parameter μ to estimate, and 

the pooled estimate is given by  where 

Hence, the power of the 2-sided hypothesis test H0 : μ = μ0 is given by expression 2 with σi 

replaced by  which is

(4)

This is equivalent to Equation 8 of Hedges and Pigott.15

Assuming that there is more than a single study in the meta-analysis, it is straightforward to 

show that  for all i. Using this fact, it is then straightforward to show that the power 
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of the fixed effect meta-analysis is greater than all the study specific powers in Equation 2. A 

similar analysis shows that the fixed-effect meta-analysis also possesses more power than 

the individual studies in the context of 1-sided hypothesis tests, provided that μ lies in the 

direction of the alternative hypothesis. Of course if there is a single study then the study 

specific and meta-analysis powers are the same.

This analysis shows that in the case of a fixed-effects model, the claim that “meta-analyses 

increase power” is completely justifiable. This conclusion was also reached by Cohn and 

Becker,13 but we also give details here to motivate our analysis of the random-effects model, 

which provides our main interest.

4 The Random-Effects Model

The analyses of individual studies (section 2) and the fixed-effect model (section 3) are 

straightforward. However, matters are more complicated under the random-effects model. 

The random-effects model relaxes the assumption that μi = μ for all i and instead assumes μi 

∼ N(μ, τ2), so that δi ∼ N(δ, τ2). If τ2 = 0, then we have δi = δ, and we recover the fixed-

effect model as a special case. The random-effects model is often presented as a slight 

modification of the fixed-effect model. This is because τ2 is typically estimated and then 

treated as fixed and known in analysis, so that  is replaced by  in analysis. However, 

this does not take into account the fact that τ2 is estimated, and the uncertainty in τ2 is 

considerable in typical meta-analyses with few studies.18–20 Another complication when 

comparing powers is that the powers of the individual studies that contribute to a random-

effects meta-analysis now depend on random δi.

4.1 The average power of the individual studies

Now that δi is a random variable, we can obtain the average study specific power 

by taking the expectation of β(δi, σi) (from Equation 2) over the joint distribution of (δi, σi). 

For the fixed-effect model, only the σi differed across studies, and we took this expectation 

over their empirical distribution. Under the random-effects model, we have δi ∼ N(δ, τ2), 

and we continue to approximate the distribution of σi with their empirical distribution, 

where we further assume that δi and σi are independent. In situations where an association 

between study specific estimates and their precision is observed then this is generally 

attributed to small study effects or publication bias; we assume that no such phenomena are 

present.

In the web supplementary materials, we show that the average power of an individual study 

that contributes to the random-effects meta-analysis is

(5)

If τ2 = 0, then Equation 5 reduces to Equation 3. Equation 5 shows how the between-study 

variance affects the average study power.
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4.2 Fitting the random-effects model

The application of the random-effects model requires an estimate of the between-study 

variance, and many estimators are available.20 The simplest and most commonly used 

estimate of τ2 in Equation 6 is the DerSimonian and Laird10 estimate. We will assume that 

this estimator is used throughout, to examine power in the current statistical climate, but we 

come back to this issue in section 4.3.3 and the discussion. This uses the Q statistic,

where  Under the assumptions of the random-effects model we 

have

where  which provides the DerSimonian and Laird estimate

The estimate of the overall treatment effect is then given by 

 and the distribution of μ̂ is approximately 

 The resulting test statistic for testing H0 : μ = μ0 is given by T, 

the ratio of μ̂ − μ0 and its approximate standard error, which can be written as

(6)

The evaluated test statistic T is then conventionally compared to an appropriate percentile of 

a standard normal distribution.
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4.3 The power of random-effects meta-analyses

The distribution of T in Equation 6 is, at best, very difficult to obtain analytically so that 

suitable power formulae are harder to derive than for the fixed-effect model. We therefore 

suggest 3 approaches for evaluating the power of the test based on Equation 6, that have 

different advantages and disadvantages. The first 2 methods require values of δ and τ2, and 

the within-study variances, and are very closely related. The first method is a well 

established approximate analytical approach, and the second is a more computationally 

expensive numerical analogue of the first method that allows for the uncertainty in estimates 

of τ2. The third method assumes that all studies are the same size and requires just the 

number of studies, the proportion of variation that is due to between-study heterogeneity 

(which we will denote as I2, where this is the quantity that the I2 statistic proposed by 

Higgins and Thompson21 estimates) and a noncentrality parameter that depends on δ, the 

number of studies and the study size.

4.3.1 An analytical approach—When applying the random-effects model, we typically 

apply the fixed-effect methodology where  is replaced by  where τ2 is usually taken 

to be its estimated value. Hence,

the power can be taken to be as described in Equation 4 for the fixed-effect model but where 

VF is replaced with  which gives

(7)

where we now use the subscript “R” to emphasise that this is the power under the random-

effects model. This is equivalent to eq. 24 of Hedges and Pigott,15 who suggest using this 

equation with the estimated between-study variance and also what they refer to as small, 

medium, and large between-study heterogeneities. We will therefore regard this type of 

approach as the conventional method for power analysis under the random-effects model. 

The main advantages of this standard approach are its computational and conceptual 

simplicity. The main disadvantage of this approach is that it does not take into account 

statistical properties of, and so the uncertainty in, the estimation of τ2 and the implications 

this has for making inferences about the average effect.

4.3.2 A Monte Carlo approach—To allow for the uncertainty in τ2 when making 

inferences about the average effect, but otherwise use the same type of approach as in 

Equation 7, an analogous Monte Carlo method can be used. To conveniently use Monte 

Carlo methods for evaluating the power of a random-effects meta-analysis, we define 

 so that Equation 6 becomes
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(8)

where, because the estimation of τ2 is location invariant, values of Xi can be used instead of 

Yi when computing Q and calculating τ̂2 in Equation 8. Hence, we can obtain the power of 

the random-effects meta-analysis, for true values of δ and τ2 and a set of within-study 

variances, by simulating many meta-analyses as  and then 

using standard meta-analysis software to perform random-effects meta-analyses using these 

outcome data. The metafor package and the command rma.uni will be used with the “DL”10 

option for this purpose throughout. Then the proportion of simulated random-effects meta-

analyses that are statistically significant at the appropriate level gives the power denoted as 

βR(δ, τ2, σ), but obtained differently, in Equation 7.

The difference between this approach and the previous one is that it clearly distinguishes 

between the true and estimated τ2. Although this Monte Carlo method requires the analyst to 

determine the true value of τ2 to use in the power calculation, the estimated between-study 

variance is used when computing the simulated test statistics that are used to determine the 

power of the test. In meta-analyses with large numbers of studies, the approximation τ2 = τ̂2 

is appropriate when making inferences about the average effect, and we will see below that 

allowing for the uncertainty in the estimated between-study variance becomes unimportant 

in meta-analyses with very large numbers of studies. The advantage of this approach is that 

it allows for the uncertainty in the estimated between-study variance when making 

inferences about the average effect, and so can be expected to provide more accurate powers. 

The disadvantage of this method is that it requires simulation and so is computationally 

more expensive and subject to Monte Carlo error.

4.3.3 An analytical approach assuming that all studies are the same “size”—
It is convenient to have a formula for the power as in the first method above, and yet also 

take into account the uncertainty in τ2 when making inferences about the average effect, as 

in the second method above. To facilitate such an analytical result, we consider the artificial 

special case where all studies are the same “size” (  for all i; this means that all studies 

provide the same amount of information). We show in the web supplementary materials that 

the cumulative distribution function of T is given by

(9)
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where  is a noncentrality parameter,  is the probability 

density function of the χ2 distribution with (k − 1) degrees of freedom, and we define the 

incomplete Gamma function:

Although we assume the use of the DerSimonian and Laird estimator of τ2 in our empirical 

investigation below, as we also explain in the web supplementary materials, the 

DerSimonian and Laird, REML and Paule Mandel estimators coincide when all variances 

are the same. See Veroniki et al.20 for full details of these and many other estimators. 

Hence, the results in this section apply whenever any of these 3 very popular estimators of 

τ2 are used.

Then by taking, for example, σ = σ̂, where σ̂2 is the typical within-study variance used by 

Higgins and Thompson,21

(10)

we can consider an analogous meta-analysis to a real one where all within-study variances 

are equal to this representative value. Since all the other parameters are unconstrained, this 

analogous meta-analysis has the same essential features (overall effect, between-study 

variance, number of studies) that drive the power in the real meta-analysis. Γ1(a, x) is 

provided by statistics packages, and we can evaluate the integral in Equation 9 numerically 

to obtain the cumulative distribution function of the test statistic. The probability of 

accepting the null hypothesis is then obtained as P(T ≤ Za) − P(T ≤ −Za), and the power of 

the random-effects meta-analysis is then obtained by subtracting this probability from 1. 

This method gives the same power as the second method when all studies are the same size 

(although the second method is subject to Monte Carlo error), and so also computes the 

power denoted as βR(δ, τ2, σ), but obtained differently, in Equation 7.

The main advantage of this method is that it takes into account the uncertainty in τ2 without 

resorting to simulation. As we will explain below, the quantities required for this method are 

more amenable to researchers performing power calculations at the planning stage. The 

main disadvantage of this approach is that it requires considering an artificial special case, 

but this type of special case was also used by Hedges and Pigott (2001)15 to make the first 

method more accessible to applied analysts.
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5 Assessing the Performance of the 3 Methods for Calculating Met A-

Analysis Power Under the Rando M-Effects Model

We now have 3 main proposals for computing the power of random-effects meta-analyses. 

The main differences between the methods are whether or not uncertainty in τ2 is taken into 

account, and whether or not all studies are assumed to be the same size. Hence, the relative 

importance of these factors are crucial in determining which method should be 

recommended in practice.

5.1 The implications of allowing for the uncertainty in the estimated between-study 
variance

The more conventional method for power analysis in random-effects meta-analysis, 

described in section 4.3.1, does not allow for the uncertainty in the estimation of τ2 when 

making inferences about the average effect. To investigate how important this consideration 

is for meta-analysis power calculations, we will initially consider the case where all studies 

are the same size so that we can perform the investigation analytically.

When all studies are the same size, so that  in Equation 7, we have VR = (σ2 + τ2)/k, 

so that Equation 7 becomes

(11)

This means that power calculations that do not allow for the uncertainty in τ2, from Equation 

11, can be compared to those that do (section 4.3.3) for this special case.

5.2 An important comparison

We have emphasised in the introduction that the meta-analysis and study-specific hypothesis 

tests involve different types of hypotheses: meta-analyses test for evidence of a population 

average effect but study-specific tests instead test for the evidence of an effect in the 

individual study. This difference can be made explicit by examining the case where k = 1 

and τ2 is treated as fixed and known. Under the fixed-effect model, the study specific and 

meta-analysis powers are the same because then the single within-study variance  is equal 

to VF. However, under the random-effects model, writing  the “average” study-

specific power (Equation 5) can be written as

(12)

and the meta-analysis power (Equation 11) can be written as

(13)
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Comparing Equations 12 and 13, we see that these powers are of the same standard form 

resulting from a 2-tailed hypothesis test involving a single normally distributed random 

variable. However, the study-specific hypothesis test in Equation 12 uses critical values of 

 whereas the meta-analysis hypothesis test uses the more usual standard 

normal critical values ±Za. We have I2 ≥ 0 so that  which means that the power 

of the study-specific hypothesis test is equivalent to the meta-analysis hypothesis test but 

where the study-specific hypothesis test has used smaller critical values. This means that the 

study-specific power in Equation 12 is greater than the random-effects meta-analysis power 

in Equation 13 if between-study heterogeneity is present. This analysis clarifies the different 

natures of the 2 types of hypothesis tests and also indicates that sufficient numbers of studies 

will be needed for the random-effects meta-analysis to achieve greater power than the 

individual studies that contribute to it.

5.3 Comparing the powers from calculations that do, and do not, take into account the 
uncertainty in τ2

The powers calculated from Equation 11 depend only on the noncentrality parameter 

 and I2 = τ2/(α2 + τ2). However the powers calculated from Equation 9, and as 

explained in section 4.3.3., further depend on k, where this dependence can also be 

conveniently expressed in the degrees of freedom (k − 1). It is obvious that Equation 11 does 

not depend on the sign of Δ, and only on its magnitude |Δ|, because Φ(z) = 1 − Φ(−z). It is 

perhaps less obvious that this is also the case in powers calculated in the way explained in 

section 4.3.3, but the same identity also establishes this. Hence, we only need consider, for 

example, positive Δ, because the results for −Δ are the same. This is in any case intuitively 

obvious because we perform conventional 2-tailed tests, so that the power depends only on 

the magnitude of δ and so on the magnitude of Δ.

In Figure 1, we show the contour plots of the resulting powers in Δ and I2, obtained using 

Equation 9. In each plot, we show power contours at 0.1, 0.2, · · ·, 0.9, and we also show the 

corresponding contours using Equation 11 as dotted lines (without labelling them, to avoid 

cluttered figures). As the sample size k increases, the results using Equation 9 to calculate 

the power become more similar to those from Equation 11, and for inordinately large k 
(1000 say, results not shown), the powers obtained using Equation 9 and from Equation 11 

become indistinguishable. This is because as the sample size increases, the uncertainty in τ2 

becomes negligible. For small k and large I2, much smaller Δ are apparently required to 

achieve low power from Equation 9 than Equation 11, but this is an artifact of the standard 

methods for random-effects meta-analysis being anticonservative in small samples where the 

heterogeneity is severe; the random-effects model’s hypothesis test possesses considerably 

less than its nominal significance level in such situations, which results in artificially small Δ 

to achieve powers that are only slightly greater than the nominal significance level. Note also 

that Δ is an increasing function in k. Hence, for a fixed effect δ and within-study standard 

error σ2, as k increases so does Δ. Hence, Δ corresponds to a smaller effect δ as k increases, 

and from Figure 1, we can see that the power to detect any fixed value of δ increases as the 

sample size k becomes larger.
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Figure 1 shows that conventional methods for power analysis under the random-effects 

model, that do not allow for the fact that τ2 must be estimated, serve as a reasonable guide to 

the actual power, especially for large k. Hence, ignoring the uncertainty in τ2 in the power 

calculation is not a very serious source of concern. However, small k is extremely common 

place in practice,22 and we can also see that the conventional method performs least 

accurately in such instances.

We also investigated this issue empirically using a database of 1991 meta-analyses from the 

Cochrane Database of Systematic Reviews (Issue 1, 2008). We used the log risk ratio as the 

measure of treatment effect; we had access to the raw count data so that any differences in 

the method of analysis used in the individual reviews presented no difficulties. Most 

Cochrane reviews contain multiple meta-analyses, corresponding to different pairwise 

comparisons of interventions and different outcomes examined. Davey et al22 classified 

each meta-analysis by outcome type, the type of interventions compared and the medical 

specialty. Here, we use data on the first reported binary outcome meta-analysis within each 

of the 1991 Cochrane reviews reporting at least 1 binary outcome meta-analysis in the full 

database extracted by Davey et al.22 We performed retrospective power calculations for all 

1991 random-effects meta-analyses using the analytical (section 4.3.1) and Monte Carlo 

(section 4.3.2) approaches, that do not, and do, allow for the uncertainty in τ2, respectively. 

Now that we apply the random-effects model to the Cochrane data, it is pertinent to recall 

that this model can be a quite crude approximation in practice. For example, see Hoaglin23 

and Shuster and Walker24 for good discussions of this issue.

For each meta-analysis, we took δ to be the absolute value of the random-effects pooled 

estimate of the average relative risk (though its sign is irrelevant, as explained above) and τ2 

to be the DerSimonian and Laird estimate of the between-study variance. By taking δ to be 

the (absolute) pooled estimate in this way, we perform retrospective power calculations for 

the null hypothesis that there is no treatment effect. We used 10 000 iterations when using 

the Monte Carlo approach, and the resulting 1991 pairs of powers are shown in Figure 2, 

where the powers obtained using the Monte Carlo method (section 4.3.2.) are shown on the 

vertical axis, and the powers obtained using the analytical approach (section 4.3.1.) are 

shown on the horizontal axis.

Figure 2 shows that the powers are in reasonable agreement. Hence ignoring the uncertainty 

in τ2 in the analytical approach continues to appear not to be a very serious concern. Despite 

this, it is also evident that the power calculated from the Monte Carlo method can differ 

substantially from the analytical power. This is because the actual powers of meta-analysis 

hypothesis tests differ from the powers obtained using methods that ignore the uncertainty in 

estimates of τ2. The analytical powers in Figure 2 are bounded below by 0.05, but this is not 

the case for the Monte Carlo method because of the approximate nature of the standard 

random-effects methods for meta-analysis; when the between-study variance is zero or very 

small, the standard methods are conservative so that actual powers of less than 0.05 are 

possible. More commonly, in other instances where the analytical power is very low, much 

higher powers using the Monte Carlo method are possible. This too is an artifact of the 

approximate nature of standard methods for random-effects meta-analysis, where if there are 

very small numbers of studies and very considerable between-study variation, standard 
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methods for random-effects meta-analysis are highly anticonservative and artificially high 

powers can be obtained; this is also evident in the top left hand plot in Figure 1 for k = 3.

We conclude that it is desirable, but not essential, to use methods for power analysis under 

the random-effects model that take into account the uncertainty in the estimation of τ2 when 

making inferences about the average effect.

5.4 Using the method assuming all studies are the same “size” to serve as a guide for 
retrospective power calculations

The suggestion in section 4.3.3 was to use an analytical approach where all studies are the 

same size, where the within-study standard error was taken to be the square root of 

corresponding typical within-study variance suggested by Higgins and Thompson.21 This 

type of approach has been suggested previously (eg, Jackson and Bowden,25) for obtaining 

a guide to how methods for meta-analysis perform. It is tempting to consider this type of 

approach in large scale empirical investigations, like the one below, because the analytical 

results are obtained almost instantly. But this computational ease comes at the price of using 

an analogous meta-analysis to the one that has been observed to obtain an indication of the 

power in the real meta-analysis. We therefore also investigated this particular issue carefully 

using the database of meta-analyses from the Cochrane Database of Systematic Reviews.

Specifically, we compared the 1991 powers obtained using the Monte Carlo method (as 

explained in the previous section) to those from the analytical approach in section 4.3.3 (top 

plot in Figure 3). We can see that, in general, the analytical powers are in good agreement 

with those obtained using simulation and the observed distribution of the within-study 

variances. Given the relative computational and conceptual simplicity of the analytical 

powers, Figure 3 provides strong evidence that it is more than adequate for giving a good 

indication of the power. However, the agreement between the 2 powers for some meta-

analyses is not so strong, and a good indicator of whether this is the case or not is of course 

the amount of variation in the within-study variances; the analytical powers generally agree 

less well for meta-analyses with the greatest variation in study sizes, as expected.

We also considered using alternatives to the typical within-study variance (Equation 10) as a 

measure of typical study size, such as the mean and median of the within-study variances or 

the corresponding standard deviations. An alternative that also resulted in good agreement 

was taking the typical within-study standard deviation to be the reciprocal of the mean of the 

within-study “precisions,” ie, instead taking  and the corresponding results 

are shown in the bottom plot in Figure 3. However, no obvious alternative resulted in any 

visible improvement to the agreement level between the powers shown in Figure 3, which 

indicates that performing power calculations that take all studies to be the same size can give 

a reasonable indication of the power but also that powers of this type are not very accurate in 

every case.

In conclusion, it would appear to be desirable, but not essential, to take the distribution of 

the within-study variances and the uncertainty in the estimation of τ2 into account. The 

Monte Carlo method described in section 4.3.2 is computationally feasible and achieves both 
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aims so it would seem reasonable to make the general recommendation that this method 

should be used for retrospective power calculations.

5.5 Using the methodology assuming all studies are the same “size” to perform power 
analyses at the planning stage

The method in Section 4.3.3. is, despite its limitations, useful for power calculations at the 

planning stage, where detailed knowledge of the distribution of the within-study variances is 

unlikely to be available. We therefore suggest that this particular method should be 

considered when performing this type of power analysis. Here, the analyst specifies the 

anticipated number of studies, a typical within-study variance and an I2 statistic. The typical 

within-study variance can be obtained from the relevant formulae for their calculation them 

and using information such as a representative study size. This is quite a lot of information 

to posit, and a variety of possibilities could be explored. Then figures like those in Figure 1 

may be used to give an indication of the value of Δ, and hence δ, that is needed to obtain 

powers of interest. In the supplementary materials that accompany this paper, we provide R 

code to produce plots like those in Figure 1 with an arbitrary k, to facilitate power 

calculations at the planning stage in this way.

6 An Empirical Investigation Comparing Meta-Analysis and Study Specific 

Powers Under the Random-Effects Model

Now that we have determined the most suitable way to perform retrospective power 

calculations under the random-effects model, we are able to compare the meta-analysis and 

average study specific powers. Specifically, we will compare the powers obtained in Section 

5 using the Monte Carlo method to the average study specific power from Equation 5 with 

the same values of δ and τ2. By taking δ to be the pooled estimates, we therefore continue to 

assume that interest lies in testing the null hypothesis of no treatment effect.

The meta-analysis power was found to be greater than the average study specific power in 

303/609 (49.8%) random-effects meta-analyses where k = 2. For k = 3, this was 211/322 

(65.5%); for k = 4, this was 170/236 (72.0%); for k = 5, this was 134/169 (79.3%); for k = 6, 
7, 8, 9, this was 290/355 (81.7%); and for k ≥ 10, this was 263/300 (87.7%). We used these 

groups to provide reasonably large proportions of meta-analyses in each group. A trend 

where the power increases with the number of studies is clear, as we should expect, although 

the observational nature of this conclusion should be emphasised because it does not control 

for other important factors such as the assumed average effect or the variance structures in 

the meta-analyses that contribute to each of the 6 groupings. Under the strong assumption 

that our data are representative of meta-analysis datasets, we estimate that random-effects 

meta-analysis results in an increase in power in 1371/1991 of meta-analyses, which is just 

under 70%. However, it is clear that our sample of meta-analyses contains many meta-

analyses where k is small; an increase in power when using random-effects meta-analysis is 

much more likely in subject areas where k is typically much larger.

Using the median, rather than the mean, study specific power in this comparison resulted in 

rather similar proportions of 303/609 (49.8%), 215/322 (66.8%), 173/236 (73.3%), 135/169 
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(79.9%), 302/355 (85.1%), and 269/300 (89.7%); using the median makes the power of the 

meta-analysis look slightly better in this comparison. Instead using the maximum study 

specific power in this comparison resulted in proportions of 135/609 (22.2%), 107/322 

(33.2%), 105/236 (44.5%), 88/169 (52.1%), 194/355 (54.6%), and 222/300 (74.0%). This 

suggests that in many meta-analyses, the largest study will possess more power than the 

random-effects meta-analysis that it contributes to.

The overall picture from this empirical investigation is that if there are less than 5 studies 

then obtaining less power from the random-effects meta-analysis than from the individual 

studies that contribute to this meta-analysis is quite likely in practice. Not only is statistical 

inference most difficult in this type of situation,24 but also it is less worthwhile in such 

cases. Most meta-analysis powers are greater than the average study specific power however, 

so this investigation does not entirely discourage the use of meta-analysis to obtain greater 

power. Despite this, our investigation certainly challenges the notion that meta-analyses 

necessarily provide greater power.

7 Discussion

We have investigated three different methods for performing power calculations for random-

effects meta-analyses. We suggest that the Monte Carlo method should be used for 

retrospective power calculations because it is computationally feasible and allows for the 

uncertainty in the estimate of τ2 and the distribution of the within-study variances. We also 

suggest that our new approximate analytical method is very suitable power calculations at 

the planning stage. We suspect that advocates of random-effects meta-analysis will find the 

comparison of these two powers disappointing. Researchers working in very different 

application areas to those represented in the Cochrane database might argue that key 

parameters, such as the number of studies and effect sizes, differ considerably in their 

subject area, so that our empirical conclusion that meta-analysis powers are disappointing 

does not necessarily apply in their work. Our analysis in section 3 demonstrates that meta-

analysis necessarily results in an increase in power when the data are correctly assumed to 

be homogenous. Combining this observation with our findings under the random-effects 

model clarifies that between-study heterogeneity has serious consequences for the power of 

meta-analyses. The main difficulty for obtaining high power in random-effects meta-analysis 

would seem to be due to the presence of considerable between-study heterogeneity. 

However, in small samples, there are further difficulties associated with estimating this 

parameter.

In meta-analyses which lack power, precision in estimation is also lacking, and therefore the 

summary intervention effect is imprecisely estimated. Thorlund et al26 have warned that if 

meta-analyses are performed too early, before enough studies are available, there is a danger 

that incorrect conclusions may be drawn. They recommend therefore that results from 

underpowered meta-analyses are interpreted with caution. Trial sequential analysis methods 

proposed by Wetterslev et al27 can be used to evaluate whether or not a particular meta-

analysis contains enough information to be regarded as providing conclusive evidence. 

Ideally, extremely underpowered meta-analyses should not be performed. However, we 

recognise that it is often difficult for researchers to know how many eligible studies provide 
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data for any given outcome until most of the reviewing work has been performed, and at that 

stage withholding the results might result in reporting bias. In some settings, a lack of power 

is caused by high observed heterogeneity rather than by the number of studies, and this is 

even more difficult to predict in advance.

We have assumed that the conventional DerSimonian and Laird method for random-effects 

meta-analysis is used throughout. Calculating power using further alternative methods for 

random-effects meta-analysis is also possible, for example, using an altenative estimator of 

the between-study variance.20 The Monte Carlo method that we advocate for retrospective 

power calculations can easily be adapted for other τ2 estimators, and our approximate 

analytical method described in section 4.3.3 applies to a variety of these estimators, as we 

have explained. Other modifications and small sample corrections have been suggested 

(eg)28,29 which inevitably have some implications for the power. For example, the 

artificially small values of Δ that achieve low powers, as seen in Figure 1, will not result in 

this difficulty when using the Hartung and Knapp modification in conjunction with common 

estimators of τ2 when all studies are the same size. This is because the modification results 

in exact inference for this special case under the random-effects model.30 Investigating the 

power when using more sophisticated methods is an important avenue for further research. 

In particular, for binary outcome data such that from the Cochrane database, methods that 

use binomial within-study distributions31,32 are in principle preferable to those that we have 

used here. However, the power formulae that we have provided have the merit of being 

simple and transparent and, provided that they can be shown to represent the amount of 

information and so the power when using more sophisticated methods, they may prove 

valuable long after current methodologies for meta-analysis, such as the DerSimonian and 

Laird method, might be consigned to history.

Our methodology allows for the testing that the true effect is any value μ0, but in our 

empirical investigations, we have only explored the null value μ0 = 0. There is also interest 

in testing for clinically significant effects, and indeed we suggest that this should be 

considered more often in application. However, the testing of the null hypothesis that there is 

no treatment effect is so ubiquitous in application that we have restricted our investigation to 

this special case. Investigating meta-analysis and study specific powers to detect other 

effects of interest could form the subject of future work.

There are many powerful and persuasive reasons for performing meta-analyses; the desire to 

increase the power to detect an effect is just one such reason. Our investigations show that 

random-effects meta-analyses can achieve this aim and that they generally do. Provided that 

sufficient numbers of studies can be found then a gain in power is of course assured. 

However, we have found that the powers of real random-effects meta-analyses compare less 

favourably to the powers of the studies that contribute to them than many might suppose. As 

we also pointed out in the introduction, the standard meta-analysis methods fail to provide 

the nominal significance level. We have not taken this into account, which means that some 

of the power that we have attributed to random-effects meta-analyses is likely to be artificial 

and due to using statistical methods that are often anticonservative. Hence, the observation 

that standard methods for meta-analysis are merely approximate strengthens our case that 

random-effects meta-analyses possess less power, relative to the studies that contribute to 
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them, than many might otherwise suppose. Our findings in no way diminish the valuable 

impact that systematic reviews and meta-analyses have had, but do lead us to conclude that 

the notion that meta-analyses necessarily increase power is one that we should be much 

more critical of.

In summary, we have provided new methods for power analysis for random-effects meta-

analysis and have investigated how the power of this type of meta-analysis compares to that 

of the studies that contribute outcome data. We hope that our new methods are a useful 

addition to the literature and that this article will serve to emphasise the importance of 

considerations of power in meta-analysis. Finally, we hope that our empirical investigations 

will make applied analysts think more critically about whether random-effects meta-

analyses, when applied to highly heterogeneous datasets with very few studies, are likely to 

provide more power than individual studies.

Supporting Information

Refer to Web version on PubMed Central for supplementary material.

References

1. Higgins, JPT., Green, S. [accessed March 7, 2017] Cochrane Handbook for Systematic Reviews of 
Interventions. 2011. http://handbook.cochrane.org/

2. Borenstein, M., Hedges, LV., Higgins, JPT., Rothstein, HR. Introduction to Meta-Analysis. 
Chichester, UK: Wiley; 2009. 

3. Polanin JR, Pigott TD. The use of meta-analytic statistical signifiance testing. Res Syn Meth. 2015; 
6:63–73.

4. Higgins JPT, Whitehead A, Simmonds M. Sequential methods for random-effects meta-analysis. 
Stat Med. 2011; 30:903–921. [PubMed: 21472757] 

5. Roloff V, Higgins JPT, Sutton AJ. Planning future studies based on the conditional power of a meta-
analysis. Stat Med. 2013; 32:11–24. [PubMed: 22786670] 

6. Turner RM, Bird SM, Higgins JPT. The impact of study size on meta-analyses: examination of 
underpowered studies in Cochrane reviews. Plos One. 2011; 8:e59202.

7. Nikolakopoulou A, Mavridis A, Salanti G. Using conditional power of network meta-analysis 
(NMA) to inform the design of future clinical trials. Biometrical J. 2014; 56:973–990.

8. Nikolakopoulou A, Mavridis A, Salanti G. Planning future studies based on the precision of network 
meta-analysis results. Stat Med. 2015; 35:978–1000. [PubMed: 26250759] 

9. Ades AE, Lu G, Higgins JP. The interpretation of random-effects meta-analysis in decision models. 
Med Decis Making. 2005; 25:646–654. [PubMed: 16282215] 

10. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clin Trials. 1986; 7:177–188. 
[PubMed: 3802833] 

11. Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J 
Royal Stat Soc Series A. 2009:137–159.

12. Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. British Med J. 
2011; 342:964–967.

13. Cohn LD, Becker BJ. How Meta-Analysis Increases Statistical Power. Psychological Methods. 
2003; 8:243–253. [PubMed: 14596489] 

14. Valentine JC, Pigott TD, Rothstein HR. How many studies do you need? A primer on statistical 
power for meta-analysis. J Educational Behav Stat. 2010; 35:215–247.

15. Hedges LV, Pigott TD. The power of statistical tests in meta-analysis. Psychological Methods. 
2001; 6:203–217. [PubMed: 11570228] 

Jackson and Turner Page 19

Res Synth Methods. Author manuscript; available in PMC 2017 September 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://handbook.cochrane.org/


16. Hoenig JM, Heisey DM. The abuse of power: The pervasive fallacy of power calculations for data 
analysis. Amer Stat. 2001; 55:19–24.

17. Matthews, DE., Farwell, VT. Using and Understanding Medical Statistics. London, UK: Karger; 
2015. 

18. Biggerstaff BJ, Jackson D. The exact distribution of Cochran’s heterogeneity statistic in one-way 
random effects meta-analysis. Stat Med. 2008; 27:6093–6110. [PubMed: 18781561] 

19. Jackson D. Confidence intervals for the between-study variance in random effects meta-analysis 
using generalised Cochran heterogeneity statistics. Res Syn Meth. 2013; 4:220–229.

20. Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, Kuss O, Higgins JPT, 
Langan D, Salanti G. Methods to estimate the between-study variance and its uncertainty in meta-
analysis. Res Syn Meth. 2015; 7:55–79.

21. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002; 
21:1539–1558. [PubMed: 12111919] 

22. Davey J, Turner RM, Clarke MJ, Higgins JPT. Characteristics of meta-analyses and their 
component studies in the Cochrane Database of Systematic Reviews: a cross-sectional, descriptive 
analysis. BMC Med Res Method. 2011; 11:160.

23. Hoaglin DC. Misunderstandings about Q and ‘Cochran’s Q test’ in meta-analysis. Stat Med. 2016; 
16:485–495.

24. Shuster JJ, Walker MA. Low-event-rate meta-analyses of clinical trials: implementing good 
practices. Stat Med. 2016; 35:2467–2478. [PubMed: 26728099] 

25. Jackson D, Bowden J. A re-evaluation of the ’quantile approximation method’ for random effects 
meta-analysis. Stat Med. 2009; 28:338–348. [PubMed: 19016302] 

26. Thorlund K, Imberger G, Walsh M, Chu R, Gluud C, Wetterslev J, Guyatt G, Devereaux PJ, 
Thabane L. The number of patients and events required to limit the risk of overestimation of 
intervention effects in meta-analysis - a simulation study. Plos One. 2011; 6:e25491. [PubMed: 
22028777] 

27. Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may establish when firm 
evidence is reached in cumulative meta-analysis. J Clin Epidemiol. 2008; 61:64–75. [PubMed: 
18083463] 

28. Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with 
binary outcome. Stat Med. 2001; 20:3875–3889. [PubMed: 11782040] 

29. Noma H. Confidence intervals for a random-effects meta-analysis based on Bartlett-type 
corrections. Stat Med. 2001; 30:3304–3312.

30. Sidik K, Jonkman JN. Authors reply. Stat Med. 2004; 23:159–162.

31. Simmonds MC, Higgins JP. A general framework for the use of logistic regression models in meta-
analysis. Stat Methods Med Res. 2016; 25:2858–2877. [PubMed: 24823642] 

32. Stijnen T, Hamza TH, Ozdemir P. Random effects meta-analysis of event outcome in the 
framework of the generalized linear mixed model with applications in sparse data. Stat Med. 2010; 
29:3046–3067. [PubMed: 20827667] 

Jackson and Turner Page 20

Res Synth Methods. Author manuscript; available in PMC 2017 September 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. 
The implications of ignoring the uncertainty in τ̂2 when performing power calculations. This 

figure explores the special case where all studies are the same size. The 4 plots show the 

power of the standard random-effects model’s hypothesis test for k = 3, 5, 10, and 50 

studies, as a function of Δ and I2. These plots allow for the fact that the between-study 

variance is estimated in practice. The dotted lines on each plot show the power of this test 

when ignoring the uncertainty in the estimated between-study variance, or equivalently as 

the sample size tends towards infinity. Note that Δ is an increasing function in k, so that as 

the sample size increases Δ corresponds to a decreasing effect δ
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Figure 2. 
The implications of ignoring the uncertainty in τ̂2 when performing power calculations. This 

figure shows the results of the empirical investigation of power in 1991 meta-analyses. A 

line of equality is also shown
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Figure 3. 
The implications of performing power calculations that assume all studies are the same size. 

This figure shows the results of the empirical investigation. The top figure shows the results 

taking all within-study variances to be the typical within-study variance in Equation 10, and 

the bottom figure takes  Lines of equality are also shown but are barely 

visible
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