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Abstract

The goal of influenza-like illness (ILI) surveillance is to determine the timing, location and magnitude of outbreaks by
monitoring the frequency and progression of clinical case incidence. Advances in computational and information
technology have allowed for automated collection of higher volumes of electronic data and more timely analyses than
previously possible. Novel surveillance systems, including those based on internet search query data like Google Flu Trends
(GFT), are being used as surrogates for clinically-based reporting of influenza-like-illness (ILI). We investigated the reliability
of GFT during the last decade (2003 to 2013), and compared weekly public health surveillance with search query data to
characterize the timing and intensity of seasonal and pandemic influenza at the national (United States), regional (Mid-
Atlantic) and local (New York City) levels. We identified substantial flaws in the original and updated GFT models at all three
geographic scales, including completely missing the first wave of the 2009 influenza A/H1N1 pandemic, and greatly
overestimating the intensity of the A/H3N2 epidemic during the 2012/2013 season. These results were obtained for both
the original (2008) and the updated (2009) GFT algorithms. The performance of both models was problematic, perhaps
because of changes in internet search behavior and differences in the seasonality, geographical heterogeneity and age-
distribution of the epidemics between the periods of GFT model-fitting and prospective use. We conclude that GFT data
may not provide reliable surveillance for seasonal or pandemic influenza and should be interpreted with caution until the
algorithm can be improved and evaluated. Current internet search query data are no substitute for timely local clinical and
laboratory surveillance, or national surveillance based on local data collection. New generation surveillance systems such as
GFT should incorporate the use of near-real time electronic health data and computational methods for continued model-
fitting and ongoing evaluation and improvement.
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Introduction

Influenza remains a paradox for public health: While influenza

epidemics are expected seasonally in temperate climates, their

exact timing and severity remain largely unpredictable, making

them a challenge to ongoing preparedness, surveillance and

response efforts [1]. Surveillance efforts for influenza seek to

determine the timing and impact of disease through characterizing

information on reported illnesses, hospitalizations, deaths, and

circulating influenza viruses [2]. Since establishment of the first

computerized disease surveillance network nearly three decades

ago [3–5], the use of information and communications technology

for public health disease monitoring has progressed and expanded.

During the last decade, the use of electronic syndromic

surveillance systems have allowed for automated, detailed, high

volume data collection and analysis in near-real time [6–9]. In

parallel, novel approaches based on influenza-related internet

search queries have been reported to yield faster detection and

estimation of the intensity of influenza epidemics [10–16]. The

public health utility of such systems for prospective monitoring and

forecasting of influenza activity, however, remains unclear [17–

21], particularly as occurred during the 2009 pandemic and the

2012/2013 epidemic season [22–24].

In November 2008, Google began prospectively monitoring

search engine records using a proprietary computational search

term query model called Google Flu Trends (GFT) to estimate

national, regional and state level ILI activity in the United States

(US) [12]. The goal of GFT was to achieve early detection and

accurate estimation of epidemic influenza intensity [13]. The

original GFT model was built by fitting linear regression models to

weekly counts for each of the 50 million most common search

queries, from the billions of individual searches submitted in the

US between 2003 and 2007 [13]. An automated query selection

process identified the exact text searches that yielded the highest
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correlations with national and regional influenza-like-illnesses (ILI)

surveillance in the US during the period of model fitting; the top

scoring 45 search terms constituted the original GFT ILI search

definition.

The GFT search algorithm was revised in the autumn of 2009,

following the emergence and rapid spread of the pandemic A/

H1N1pdm09 influenza virus in the US, which had gone wholly

undetected by the GFT system. The updated GFT model used

surveillance data from the first 20 weeks of the pandemic and a

qualitative decision process with less restrictive criteria for

additional ILI-related search terms to be included [14]. By

September 2009 the historical GFT model was replaced with

retrospective estimates from the revised algorithm. Currently, the

updated GFT model provides real-time estimates of influenza

intensity at three geographic scales in the US: national, state and

select local cities, as well as estimates for many countries

worldwide [16].

The original and updated GFT models have both shown high

retrospective correlation with national and regional ILI disease

surveillance data [13,14]; however, the prospective accuracy of

this surveillance tool remains unclear, even though GFT

estimates are used in forecasting models for influenza incidence

[15,20,21]. We present a comparative analysis of traditional

public health ILI surveillance data and GFT estimates for ten

influenza seasons to assess the retrospective and prospective

performances of GFT to capture season-to-season epidemic

timing and magnitude.

Methods

Public Health ILI Surveillance and Internet Search Query
Data

We compared weekly ILI and GFT data from June 1, 2003

through March 30, 2013, a period of ten influenza seasons which

included a range of mild and moderately severe seasonal influenza

epidemics as well as the emergence of the first influenza pandemic

in over forty years. The surveillance systems were assessed at three

geographical levels: entire US, Mid-Atlantic region (New Jersey,

New York and Pennsylvania) and New York City.

All public health surveillance data used in the study came from

systems operating prospectively on a daily or weekly basis

throughout the study period [2,25–27]. Nationwide and regional

ILI surveillance data were compiled from the US Centers for

Disease Control and Prevention (CDC) sentinel ILI-Net surveil-

lance system, which includes sources ranging from small physician

practices to large electronic syndromic surveillance networks [2].

The CDC ILI-Net system is publically available each week,

typically on Friday for the previous week ending Saturday during

the respiratory season (October to May), with a recognized

reporting lag of 1–2 weeks [2,13]. Local ILI data came from the

New York City Department of Health and Mental Hygiene

(DOHMH) emergency department (ED) syndromic surveillance

system, which is collected and analyzed daily, with a reporting lag

of about one day [25–27]. In each system, all weekly public health

surveillance ILI proportions were calculated as total ILI visits

divided by all visits each week.

Internet search query data came from the original [13] and

updated GFT models [14], using weekly estimates available online

[16] from both the periods of retrospective model-fitting (4 seasons

for the original model and 6 seasons for the updated model) and

prospective operation for both models (1 season and 4 seasons,

respectively; Table 1). Finalized weekly GFT estimates were

publically available each Sunday for the previous week, with a

reporting lag of about one day. The original and updated GFT

models used scaled measures of ILI-related searches to be directly

comparable to the weighted ILI proportions from the CDC ILI-

Net system [2,13,14,16] (Figure 1). For additional details on data

sources, see Supporting Information.

Measurement of Epidemic Timing and Intensity
All observed ILI weekly proportions were analyzed with a

traditional Serfling regression approach to establish weekly

expected baselines and estimate the ‘‘excess’’ ILI proportions

attributable to influenza and identify epidemic periods ([28–33];

Supporting Information). The GFT system presents ILI search

query estimates as a qualitative measure of influenza activity on a

scale ranging from ‘‘minimal’’ to ‘‘intense’’ each week [16]; neither

GFT model provided quantitative measure for detection or

estimation of impact [13,14]. For all public health surveillance

and GFT estimates we assessed two epidemiological criteria to

characterize influenza outbreaks: epidemic timing and intensity.

Timing was based on estimates of epidemic onset and peak

week for each season and ILI surveillance system. The onset each

season was defined as the first of consecutive weeks exceeding the

surveillance threshold (upper limit of the 95% confidence interval

of the Serfling baseline). The peak week was identified as the week

with the greatest proportion of ILI visits each season or epidemic

(Table 2).

For each data source and season we assessed epidemic intensity

by determining the proportion of excess ILI for peak weeks and

by summing the weekly excess ILI proportions for each

epidemic period as a measure of cumulative ILI intensity for

each season and epidemic. All Serfling regression confidence

intervals represented the upper and lower 95% limit, calculated

as the predicted non-epidemic baseline 61.96 standard devia-

tions [28–33]. We calculated the ratio of excess GFT divided by

excess ILI at each geographic level for each epidemic (Table 3),

with a constant ratio indicating consistent influenza monitoring

by GFT for the period.

Author Summary

In November 2008, Google Flu Trends was launched as an
open tool for influenza surveillance in the United States.
Engineered as a system for early detection and daily
monitoring of the intensity of seasonal influenza epidem-
ics, Google Flu Trends uses internet search data and a
proprietary algorithm to provide a surrogate measure of
influenza-like illness in the population. During its first
season of operation, the novel A/H1N1-pdm influenza
virus emerged, heterogeneously causing sporadic out-
breaks in the spring and summer of 2009 across many
parts of the United States. During the autumn 2009
pandemic wave, Google updated their model with a new
algorithm and case definition; the updated model has run
prospectively since. Our study asks whether Google Flu
Trends provides accurate detection and monitoring of
influenza at the national, regional and local geographic
scales. Reliable local surveillance is important to reduce
uncertainty and improve situational awareness during
seasonal epidemics and pandemics. We found substantial
flaws with the original and updated Google Flu Trends
models, including missing the emergence of the 2009
pandemic and overestimating the 2012/2013 influenza
season epidemic. Our work supports the development of
local near-real time computerized syndromic surveillance
systems, and collaborative regional, national and interna-
tional networks.

Reassessing Google Flu Trends: A Comparative Study
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Estimating Accuracy of Internet Search Query Data
To further evaluate the week-to-week accuracy and timing of

GFT and potential asynchrony with traditional ILI surveillance,

we calculated Pearson correlations in the national, regional and

local datasets, following the original methods used in the

development [13] and evaluation of GFT [14]. Original and

updated GFT model estimates were assessed for the periods of

retrospective model-fitting and prospective monitoring (Table 2),

and for specific epidemic seasons (Table 4). We measured cross-

correlations at negative and positive lags for each influenza season

to identify the corresponding lead or lag with the highest

correlation values between GFT and traditional ILI systems,

indicating the degree of shift in the timing of the GFT trends

compared to ILI surveillance.

While correlations are useful to assess GFT [14], they only

provide a measure of relative correspondence between ILI and

internet search systems, and do not provide an indication of the

nature of the relationship between the trend estimates or the

observed lags. As a complementary measure, we compared the

regression slope of public health ILI data with GFT estimates

during retrospective model-fitting and prospective periods, and for

specific seasons. For further details, see Supporting Information.

Results

During the study period, June 2003 to March 2013, over 4.5

million ILI visits out of 230 million total outpatient sentinel

physician visits were reported nationwide to the CDC ILI-Net

surveillance network, of which 16.5% were from the Mid-Atlantic

surveillance region. In New York City, over 780,000 ILI and 38

million total ED visits were recorded in the DOHMH syndromic

surveillance system, with coverage increasing from 88% of all ED

visits that occurred citywide during 2003/2004 to .95% of all

visits since 2008. The weekly proportion of ILI visits and GFT

estimates showed similar seasonal and epidemic patterns across the

three regional scales, though with notable differences between

retrospective and prospective periods (Figure 1; Table 1). Specif-

ically, during prospective use the original GFT algorithm severely

Figure 1. Time-series of weekly influenza-like illness (ILI) surveillance and Google Flu Trends (GFT) search query estimates, June
2003–March 2013. Observed weekly ILI proportions (black lines) are shown with Serfling model baseline (gray lines) and 95% epidemic threshold
(dashed lines). The periods of the early wave of the 2009 pandemic and the 2012/2013 epidemic are shaded in grey. Sentinel ILI-Net surveillance is
shown for (A) the United States and (B) Mid-Atlantic States (New Jersey, New York, Pennsylvania). Local ILI surveillance from emergency department
visits is shown for (C) New York City. Scaled GFT internet search query estimates are shown for model-fitting periods for the original (thin red line)
and updated (thin blue line) GFT models, and for the periods of prospective operation of the original (thick red line) and updated (thick blue line) GFT
models. For Mid-Atlantic States the updated GFT model data represents ILI proportions only for New Jersey and New York (see Supporting
Information).
doi:10.1371/journal.pcbi.1003256.g001

Reassessing Google Flu Trends: A Comparative Study

PLOS Computational Biology | www.ploscompbiol.org 3 October 2013 | Volume 9 | Issue 10 | e1003256



underestimated the early 2009 pandemic wave (shaded 2009

period, Figure 1), and the updated GFT model greatly exagger-

ated the intensity of the 2012/2013 influenza season (shaded

2012/2013 period, Figure 1).

Original GFT Model, 2003–2009 Prior to the Pandemic
Historical estimates from the original GFT model were based

on the model-fitting period from September 28, 2003 to March

17, 2007; the system was evaluated during March 18, 2007 to May

11, 2008, and has run prospectively since then. The week-to-week

GFT estimates during the model-fitting period were highly

correlated with ILI surveillance data at the national (R2 = 0.91),

regional (Mid-Atlantic, R2 = 0.79) and state/local level (New York,

R2 = 0.89; Table 1). Similarly, GFT estimates were highly

correlated with CDC ILI surveillance at the national and regional

levels during the validation period [13], and remained high

through the period of prospective use prior to the emergence of the

2009 A/H1N1 pandemic, from May 12, 2008 to March 28, 2009

(R2$0.75; Table 4). Seasonal and epidemic onset and peak weeks

varied considerably during the period (Table 2). Estimation of

excess ILI visits and GFT search query fractions were also well

correlated on a week to week basis during this period (Supporting

Tables; Figure 2).

Original GFT Model during the First Wave of the 2009
Pandemic

In late-April 2009, detection of novel A/H1N1 influenza in an

outbreak in Queens, New York, was immediately followed by a

spike in ILI surveillance data across much of the nation during the

week ending May 2, 2009 [2]. Mid-Atlantic States and New York

City experienced a substantial spring pandemic wave

(Figure 1B,C), unlike many other regions of the US [2]. Despite

recognized pandemic activity, the national GFT estimates were

below baseline ILI levels for May–August 2009, indicating no

excess impact (red line, shaded 2009 period, Figure 1A). The

correlations between the surveillance ILI and GFT estimates,

however, were very high during this period at the US level for

observed (R2 = 0.91) as well as estimated excess values (R2 = 0.81;

Figure 2A). At the Mid-Atlantic level, correlations were lower for

observed (R2 = 0.51), but still high for estimated excess values

(R2 = 0.80), while the slope of the linear relationship between the

two surveillance systems was near zero (slope = 0.11), indicating

that there was little or no excess ILI estimated by GFT (Figure 2B).

The discrepancy at the Mid-Atlantic level was exacerbated for

New York City, where the pandemic impact was greater than any

other epidemic that decade, while the original GFT estimates

remained near expected baseline levels for the entire period

(R2 = 0.78). Accordingly, the slope of the GFT regression against

ILI was near zero (slope = 0.05), indicating that GFT data did not

accurately measure the intensity of the pandemic (Figure 2C).

Taken together, the original GFT model missed the spring 2009

pandemic wave at all levels (Figure 1), providing incidence

estimates 30–40 fold lower than those based on ILI surveillance

(Table 3).

Updated GFT Model, Retrospective Period 2003–2009
The original and updated GFT estimates appeared very similar

during the pre-pandemic period 2003–2009, but diverged

considerably by May 2009 (red and blue lines, Figure 1). Like

the original GFT model, the updated GFT estimates during the

model-fitting period were highly correlated with CDC ILI

surveillance at the national and regional levels (R2$0.77,

Table 1). In contrast for New York City, the updated GFT

estimates were less well correlated with local ILI syndromic

surveillance data during this period (R2 = 0.51, Table 1). Of

particular interest is the retrospective characterization of the 2009

Table 1. Retrospective and prospective performance of original and updated Google Flu Trends (GFT) algorithm compared with
national (United States), regional (Mid-Atlantic States) and local (New York City) weekly influenza-like illness (ILI) surveillance data,
2003–2013.

Time Period and Geographic Location Original GFT modela Updated GFT modelb

R2 R2

National

Retrospective GFT model-fitting period 0.91 0.94

Prospective GFT model period 0.64 0.73

All study weeks 0.86 0.77

Mid-Atlantic

Retrospective GFT model-fitting period 0.79 0.77

Prospective GFT model period 0.27 0.57

All study weeks 0.64 0.64

New York

Retrospective GFT model-fitting period 0.89 0.51

Prospective GFT model period 0.03 0.77

All study weeks 0.34 0.41

Performance was evaluated by linear regression of weekly GFT estimates against weekly ILI surveillance.
aOriginal GFT model time periods: The retrospective query selection model-fitting period was from September 28, 2003 through March 17, 2007; the prospective GFT
model validation period was from March 18, 2007 through May 17, 2008 and ongoing operation was from May 18, 2008 through Aug 1, 2009. Mid-Atlantic region states
included NJ, NY and PA (13). New York comparison was based on NY state GFT estimates (16).
bUpdated GFT model time periods: the retrospective query selection model-fitting period was from September 28, 2003 through September 18, 2009; The prospective
operation period has run from September 19, 2009 through March 30, 2013. Mid-Atlantic region states included only NJ and NY (14). The New York level comparison
was based on New York City GFT estimates (16).
doi:10.1371/journal.pcbi.1003256.t001

Reassessing Google Flu Trends: A Comparative Study

PLOS Computational Biology | www.ploscompbiol.org 4 October 2013 | Volume 9 | Issue 10 | e1003256



T
a

b
le

2
.

C
o

m
p

ar
is

o
n

o
f

se
as

o
n

al
an

d
e

p
id

e
m

ic
w

e
e

k
o

f
o

n
se

t
an

d
p

e
ak

w
e

e
ks

as
m

e
as

u
re

d
b

y
G

o
o

g
le

Fl
u

T
re

n
d

s
(G

FT
)

an
d

p
u

b
lic

h
e

al
th

in
fl

u
e

n
za

-l
ik

e
ill

n
e

ss
(I

LI
)

su
rv

e
ill

an
ce

d
at

a
at

th
e

n
at

io
n

al
(U

n
it

e
d

St
at

e
s)

,
re

g
io

n
al

(M
id

-A
tl

an
ti

c)
an

d
lo

ca
l

(N
e

w
Y

o
rk

C
it

y)
le

ve
ls

.

T
im

e
P

e
ri

o
d

N
a

ti
o

n
a

l,
U

n
it

e
d

S
ta

te
s

R
e

g
io

n
a

l,
M

id
-A

tl
a

n
ti

c
S

ta
te

s
L

o
ca

l,
N

e
w

Y
o

rk
C

it
y

W
e

e
k

o
f

O
n

se
t

(P
e

a
k

)
IL

I
S

u
rv

e
il

la
n

ce

D
if

fe
re

n
ce

in
W

e
e

k
o

f
O

n
se

t
(P

e
a

k
)

O
ri

g
in

a
l

G
F

T
m

o
d

e
la

D
if

fe
re

n
ce

in
W

e
e

k
o

f
O

n
se

t
(P

e
a

k
)

U
p

d
a

te
d

G
F

T
m

o
d

e
lb

W
e

e
k

o
f

O
n

se
t

(P
e

a
k

)
IL

I
S

u
rv

e
il

la
n

ce

D
if

fe
re

n
ce

in
W

e
e

k
o

f
O

n
se

t
(P

e
a

k
)

O
ri

g
in

a
l

G
F

T
m

o
d

e
la

D
if

fe
re

n
ce

in
W

e
e

k
o

f
O

n
se

t
(P

e
a

k
)

U
p

d
a

te
d

G
F

T
m

o
d

e
lb

W
e

e
k

o
f

O
n

se
t

(P
e

a
k

)
IL

I
S

u
rv

e
il

la
n

ce

D
if

fe
re

n
ce

in
W

e
e

k
o

f
O

n
se

t
(P

e
a

k
)

O
ri

g
in

a
l

G
F

T
m

o
d

e
la

D
if

fe
re

n
ce

in
W

e
e

k
o

f
O

n
se

t
(P

e
a

k
)

U
p

d
a

te
d

G
F

T
m

o
d

e
lb

2
0

0
3

/2
0

0
4

se
as

o
n

4
4

(5
2

)
+3

(2
2

)
+3

(0
)

4
8

(5
2

)
2

1
(2

1
)

0
(0

)
4

6
(5

2
)

+1
(2

1
)

+1
(0

)

2
0

0
4

/2
0

0
5

se
as

o
n

5
1

(6
)

0
(0

)
0

(+
1

)
4

9
(5

1
/6

)
+1

(+
2

/0
)

+1
(+

1
/+

1
)

4
7

(5
2

)
+3

(+
1

)
+3

(+
1

)

2
0

0
5

/2
0

0
6

se
as

o
n

4
9

(5
2

/9
)

+2
(0

/0
)

+2
(0

/0
)

4
8

(5
2

/6
)

+4
(+

1
/+

3
)

+4
(0

/+
3

)
3

(6
)

2
2

(+
3

)
2

3
(+

1
)

2
0

0
6

/2
0

0
7

se
as

o
n

5
0

(5
2

/7
)

+1
(0

/2
1

)
+1

(0
/0

)
4

7
(5

2
/7

)
+4

(+
1

/+
2

)
+5

(+
1

/+
2

)
4

7
(8

)
+4

(+
1

)
+1

1
(0

)

2
0

0
7

/2
0

0
8

se
as

o
n

5
2

(7
)

+1
(+

1
)

+3
(+

1
)

4
(7

)
2

3
(+

1
)

2
3

( +
1

)
4

4
(7

)
+9

(+
1

)
+9

(+
1

)

2
0

0
8

/2
0

0
9

se
as

o
n

4
(6

)
2

1
(+

2
)

0
(+

1
)

4
(8

)
0

(2
2

)
2

3
(2

2
)

3
(7

)
2

2
(2

1
)

2
2

(0
)

Sp
ri

n
g

2
0

0
9

p
an

d
e

m
ic

A
/H

1
N

1
1

7
(1

7
)

**
*

0
(0

)
1

7
(2

1
)

**
*

0
(+

2
)

1
7

(2
1

)
+3

(2
1

)
0

(0
)

2
0

0
9

/2
0

1
0

p
an

d
e

m
ic

se
as

o
n

**
(4

2
)

N
A

**
(0

)
**

(4
3

)
N

A
**

(+
1

)
3

4
(4

7
)

N
A

+1
(2

3
)

2
0

1
0

/2
0

1
1

se
as

o
n

5
0

(5
)

N
A

+1
(+

2
)

4
8

(5
2

/6
)

N
A

+3
(+

1
/+

1
)

4
6

(5
2

)
N

A
+4

(+
7

)

2
0

1
1

/2
0

1
2

se
as

o
n

8
(1

1
)

N
A

2
8

(2
1

)
**

*
N

A
**

*
**

*
(5

2
)

N
A

**
*

(+
1

)

2
0

1
2

/2
0

1
3

se
as

o
n

4
7

(5
2

)
N

A
2

8
(+

3
)

4
8

(5
2

)
N

A
2

9
(+

3
)

4
9

(3
)

N
A

2
1

1
(0

)

W
e

e
k

o
f

o
n

se
t

w
as

id
e

n
ti

fi
e

d
as

th
e

fi
rs

t
o

f
co

n
se

cu
ti

ve
w

e
e

ks
fo

r
e

ac
h

sy
st

e
m

an
d

re
g

io
n

ab
o

ve
it

s
Se

rf
lin

g
re

g
re

ss
io

n
9

5
%

th
re

sh
o

ld
,

an
d

p
e

ak
s

w
e

re
id

e
n

ti
fi

e
d

as
th

e
w

e
e

ks
re

p
o

rt
in

g
th

e
h

ig
h

e
st

p
e

rc
e

n
t-

IL
I

fo
r

e
ac

h
se

as
o

n
o

r
e

p
id

e
m

ic
.

T
h

e
p

u
b

lic
h

e
al

th
IL

I
o

n
se

t
an

d
p

e
ak

w
e

e
ks

ar
e

g
iv

e
n

b
y

su
rv

e
ill

an
ce

w
e

e
k

fo
r

e
ac

h
se

as
o

n
.

T
h

e
G

FT
m

o
d

e
l

o
n

se
t

an
d

p
e

ak
w

e
e

ks
ar

e
g

iv
e

n
re

la
ti

ve
to

th
e

co
rr

e
sp

o
n

d
in

g
se

as
o

n
/e

p
id

e
m

ic
an

d
re

g
io

n
al

IL
I

su
rv

e
ill

an
ce

w
e

e
ks

.
a
O

ri
g

in
al

G
FT

m
o

d
e

lt
im

e
p

e
ri

o
d

s:
T

h
e

re
tr

o
sp

e
ct

iv
e

q
u

e
ry

se
le

ct
io

n
m

o
d

e
l-

fi
tt

in
g

p
e

ri
o

d
w

as
fr

o
m

Se
p

te
m

b
e

r
2

8
,2

0
0

3
th

ro
u

g
h

M
ar

ch
1

7
,2

0
0

7
;t

h
e

p
ro

sp
e

ct
iv

e
G

FT
m

o
d

e
lv

al
id

at
io

n
p

e
ri

o
d

w
as

fr
o

m
M

ar
ch

1
8

,2
0

0
7

th
ro

u
g

h
M

ay
1

7
,

2
0

0
8

an
d

o
n

g
o

in
g

o
p

e
ra

ti
o

n
w

as
fr

o
m

M
ay

1
8

,
2

0
0

8
th

ro
u

g
h

A
u

g
1

,
2

0
0

9
.

M
id

-A
tl

an
ti

c
re

g
io

n
st

at
e

s
in

cl
u

d
e

d
N

J,
N

Y
an

d
P

A
(1

3
).

N
e

w
Y

o
rk

co
m

p
ar

is
o

n
w

as
b

as
e

d
o

n
N

Y
st

at
e

G
FT

e
st

im
at

e
s

(1
6

).
b

U
p

d
at

e
d

G
FT

m
o

d
e

l
ti

m
e

p
e

ri
o

d
s:

th
e

re
tr

o
sp

e
ct

iv
e

q
u

e
ry

se
le

ct
io

n
m

o
d

e
l-

fi
tt

in
g

p
e

ri
o

d
w

as
fr

o
m

Se
p

te
m

b
e

r
2

8
,2

0
0

3
th

ro
u

g
h

Se
p

te
m

b
e

r
1

8
,2

0
0

9
;T

h
e

p
ro

sp
e

ct
iv

e
o

p
e

ra
ti

o
n

p
e

ri
o

d
h

as
ru

n
fr

o
m

Se
p

te
m

b
e

r
1

9
,2

0
0

9
th

ro
u

g
h

M
ar

ch
3

0
,

2
0

1
3

.
M

id
-A

tl
an

ti
c

re
g

io
n

st
at

e
s

in
cl

u
d

e
d

o
n

ly
N

J
an

d
N

Y
(1

4
).

T
h

e
N

e
w

Y
o

rk
le

ve
l

co
m

p
ar

is
o

n
s

w
as

b
as

e
d

o
n

N
e

w
Y

o
rk

C
it

y
G

FT
e

st
im

at
e

s
(1

6
).

**
N

at
io

n
al

an
d

M
id

-A
tl

an
ti

c
re

g
io

n
d

at
a

re
m

ai
n

e
d

ab
o

ve
th

re
sh

o
ld

at
th

e
b

e
g

in
n

in
g

o
f

th
e

2
0

0
9

/2
0

1
0

p
an

d
e

m
ic

se
as

o
n

.
**

*N
o

co
n

se
cu

ti
ve

w
e

e
ks

ab
o

ve
th

re
sh

o
ld

to
id

e
n

ti
fy

o
n

se
t

o
r

p
e

ak
d

u
ri

n
g

th
is

p
e

ri
o

d
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

cb
i.1

0
0

3
2

5
6

.t
0

0
2

Reassessing Google Flu Trends: A Comparative Study

PLOS Computational Biology | www.ploscompbiol.org 5 October 2013 | Volume 9 | Issue 10 | e1003256



T
a

b
le

3
.

C
o

m
p

ar
is

o
n

o
f

e
p

id
e

m
ic

in
te

n
si

ty
d

u
ri

n
g

th
e

2
0

0
9

A
/H

1
N

1
in

fl
u

e
n

za
p

an
d

e
m

ic
an

d
th

e
2

0
1

2
/2

0
1

3
se

as
o

n
al

A
/H

3
N

2
e

p
id

e
m

ic
as

m
e

as
u

re
d

b
y

G
o

o
g

le
Fl

u
T

re
n

d
s

(G
FT

)
an

d
p

u
b

lic
h

e
al

th
in

fl
u

e
n

za
-l

ik
e

ill
n

e
ss

(I
LI

)
su

rv
e

ill
an

ce
at

th
e

n
at

io
n

al
(U

n
it

e
d

St
at

e
s)

,
re

g
io

n
al

(M
id

-A
tl

an
ti

c)
an

d
lo

ca
l

(N
e

w
Y

o
rk

C
it

y)
le

ve
ls

.

E
p

id
e

m
ic

p
e

a
k

E
p

id
e

m
ic

in
te

n
si

ty
a

s
p

e
rc

e
n

t
o

v
e

r
b

a
se

li
n

e
C

o
m

p
a

ri
so

n
G

F
T

to
IL

I
su

rv
e

il
la

n
ce

T
im

e
P

e
ri

o
d

a
n

d
G

e
o

g
ra

p
h

ic
L

o
ca

ti
o

n
IL

I%
a

t
p

e
a

k
w

e
e

k
se

a
so

n
a

l
e

x
ce

ss
(9

5
%

C
I)

ra
ti

o
e

x
ce

ss
G

F
T

:I
L

I

IL
I

su
rv

e
il

la
n

ce
o

ri
g

in
a

l
G

F
T

m
o

d
e

l
u

p
d

a
te

d
G

F
T

m
o

d
e

l
IL

I
su

rv
e

il
la

n
ce

o
ri

g
in

a
l

G
F

T
m

o
d

e
l

u
p

d
a

te
d

G
F

T
m

o
d

e
l

p
ro

sp
e

ct
iv

e
(r

e
tr

o
sp

e
ct

iv
e

)

N
a

ti
o

n
a

l,
U

n
it

e
d

S
ta

te
s

Sp
ri

n
g

2
0

0
9

p
an

d
e

m
ic

A
/H

1
N

1
2

.7
1

.5
2

.1
1

0
.3

(6
.1

–
1

4
.5

)
0

.3
(0

.1
–

0
.6

)
9

.7
(5

.5
–

1
3

.9
)

0
.0

3
(0

.9
4

)

A
u

tu
m

n
2

0
0

9
p

an
d

e
m

ic
A

/H
1

N
1

7
.7

N
A

7
.1

5
9

.2
(5

1
.8

–
6

6
.5

)
N

A
4

3
.8

(3
7

.9
–

4
9

.8
)

0
.7

4

2
0

0
9

p
an

d
e

m
ic

A
/H

1
N

1
,

b
o

th
w

av
e

s
7

.7
N

A
7

.1
6

9
.4

(5
7

.9
–

8
1

.0
)

N
A

5
3

.5
(4

3
.4

–
6

3
.7

)
0

.7
7

2
0

1
2

/2
0

1
3

se
as

o
n

al
A

/H
3

N
2

6
.1

N
A

1
0

.6
2

7
.3

(2
1

.7
–

3
2

.9
)

N
A

7
3

.2
(6

3
.7

–
8

2
.6

)
2

.6
8

R
e

g
io

n
a

l,
M

id
-A

tl
a

n
ti

c
S

ta
te

s

Sp
ri

n
g

2
0

0
9

p
an

d
e

m
ic

A
/H

1
N

1
4

.9
1

.4
3

.2
2

7
.2

(2
1

.9
–

3
2

.5
)

0
.6

(0
.0

3
–

1
.1

)
1

9
.2

(1
5

.4
–

2
3

.0
)

0
.0

2
(0

.7
1

)

A
u

tu
m

n
2

0
0

9
p

an
d

e
m

ic
A

/H
1

N
1

8
.3

N
A

7
5

2
.1

(4
2

.8
–

6
1

.3
)

N
A

4
0

.2
(3

3
.5

–
4

6
.9

)
0

.7
7

2
0

0
9

p
an

d
e

m
ic

A
/H

1
N

1
,

b
o

th
w

av
e

s
8

.3
N

A
7

.1
7

9
.3

(6
4

.7
–

9
3

.8
)

N
A

5
9

.4
(4

8
.9

–
7

0
.0

)
0

.7
5

2
0

1
2

/2
0

1
3

se
as

o
n

al
A

/H
3

N
2

5
.7

N
A

1
3

3
4

.3
(2

7
.3

–
4

1
.4

)
N

A
7

1
.4

(6
5

.9
–

7
6

.8
)

2
.0

8

L
o

ca
l,

N
e

w
Y

o
rk

C
it

y

Sp
ri

n
g

2
0

0
9

p
an

d
e

m
ic

A
/H

1
N

1
1

4
.3

1
.4

3
.1

5
5

.5
(5

2
.2

–
5

8
.8

)
1

.3
(0

.4
–

2
.1

)
1

5
.4

(1
0

.9
–

1
9

.8
)

0
.0

2
(0

.2
8

)

A
u

tu
m

n
2

0
0

9
p

an
d

e
m

ic
A

/H
1

N
1

4
.5

N
A

4
.4

2
6

.5
(1

9
.0

–
3

4
.0

)
N

A
2

4
.3

(1
8

.8
–

2
9

.9
)

0
.9

2

2
0

0
9

p
an

d
e

m
ic

A
/H

1
N

1
,

b
o

th
w

av
e

s
1

4
.3

N
A

4
.4

8
2

.0
(7

1
.2

–
9

2
.8

)
N

A
3

9
.7

(2
9

.7
–

4
9

.7
)

0
.4

8

2
0

1
2

/2
0

1
3

se
as

o
n

al
A

/H
3

N
2

5
.9

N
A

1
2

.7
2

6
.3

(2
1

.2
–

3
1

.4
2

)
N

A
7

7
.9

(6
8

.2
–

8
7

.5
)

2
.9

6

Ep
id

e
m

ic
in

te
n

si
ty

w
as

m
e

as
u

re
d

b
y

Se
rf

lin
g

re
g

re
ss

io
n

o
f

w
e

e
kl

y
p

e
rc

e
n

t-
IL

I
fo

r
p

u
b

lic
h

e
al

th
su

rv
e

ill
an

ce
d

at
a

an
d

G
FT

e
st

im
at

e
s

fo
r

p
e

ak
w

e
e

k
an

d
se

as
o

n
al

e
p

id
e

m
ic

e
xc

e
ss

,
w

it
h

co
rr

e
sp

o
n

d
in

g
u

p
p

e
r

an
d

lo
w

e
r

9
5

%
lim

it
,

ca
lc

u
la

te
d

as
th

e
p

re
d

ic
te

d
n

o
n

-e
p

id
e

m
ic

b
as

e
lin

e
+1

.9
6

st
an

d
ar

d
d

e
vi

at
io

n
s.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

cb
i.1

0
0

3
2

5
6

.t
0

0
3

Reassessing Google Flu Trends: A Comparative Study

PLOS Computational Biology | www.ploscompbiol.org 6 October 2013 | Volume 9 | Issue 10 | e1003256



Table 4. Performance of Google Flu Trends (GFT) relative to public health influenza-like illness (ILI) surveillance at the national
(United States), regional (Mid-Atlantic States) and local (New York City) levels for specific epidemic and pandemic seasons.

Time Period and Geographic Location Original GFT model Updated GFT model

R2 R2 (’+/2 week lag, max R2)

National, United States

Influenza seasons 2003–2009 (prior to 2009 pandemic) 0.88 0.92

2009 pandemic A/H1N1 early wave 0.91 0.84

2009/2010 pandemic A/H1N1 season NA 0.98

2010/2011 season NA 0.95

2011/2012 season NA 0.88

2012/2013 season NA 0.90

Regional, Mid-Atlantic States

Influenza seasons 2003–2009 (prior to 2009 pandemic) 0.75 0.77

2009 pandemic A/H1N1 early wave 0.51 0.82

2009/2010 pandemic A/H1N1 season NA 0.92

2010/2011 season NA 0.83

2011/2012 season NA 0.37

2012/2013 season NA 0.86

Local, New York City

Influenza seasons 2003–2009 (prior to 2009 pandemic) 0.87 0.84

2009 pandemic A/H1N1 early wave 0.78 0.88

2009/2010 pandemic A/H1N1 season NA 0.51 (23 wks, 0.89)

2010/2011 season NA 0.74 (+1 wk, 0.80)

2011/2012 season NA 0.80

2012/2013 season NA 0.94

doi:10.1371/journal.pcbi.1003256.t004

Figure 2. Scatter plots of weekly excess influenza-like illness (ILI) visit proportions against original Google Flu Trends (GFT) model
search query estimates, 2003–2009. Weekly excess percent-ILI is calculated as Serfling estimates subtracted from observed proportions. Plots
show original GFT model estimates compared with weighted CDC ILI-Net data for (A) the United States, and (B) Mid-Atlantic Census Region States
(New Jersey, New York, Pennsylvania), and local ILI surveillance from emergency department visits for (C) New York City. Plots are shown for pre-
pandemic influenza seasons, June 1, 2003 to April 25, 2009 (grey circles) and the early wave of the A/H1N1 pandemic, April 26 to August 1, 2009 (red
diamonds). Lines representing equivalent axes for X = Y are shown (grey dashed line). Regression lines are shown for seasonal influenza 2003–2009
(black line) and the early 2009 wave of the pandemic (red line).
doi:10.1371/journal.pcbi.1003256.g002
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pandemic by the updated GFT algorithm, which tracked the

spring wave very well at the national level, but underestimated the

magnitude at the regional level by nearly 30%, and at the New

York City level by 70% (Figure 1; Table 3).

Updated GFT Model Ability to Track the Fall 2009
Pandemic

In September 2009, the updated GFT algorithm began running

prospectively, providing estimates that tracked CDC ILI surveil-

lance data well for the remainder of 2009, a period in which most

pandemic A/H1N1 infections occurred. Updated GFT estimates

were highly correlated with ILI surveillance at the national

(R2 = 0.98), and regional (R2 = 0.92) levels (Figure 1A–B; Table 4).

Mid-Atlantic ILI surveillance, however, demonstrated two peaks,

consistent with different timing of pandemic waves in states within

the region (Figure 1B). For New York City, the updated GFT

estimates and ILI surveillance were less well correlated when

measured directly (R2 = 0.51), though highly correlated when

lagged by three weeks (R2 = 0.89), showing the updated GFT

model estimates for the fall 2009 pandemic wave to increase and

peak 3 weeks earlier than ILI surveillance (Figure 1C; Table 4).

Overall, GFT underestimated the cumulative ILI incidence of the

main pandemic period, May–December 2009, by 52% for New

York City (25% for the broader region), with non-overlapping

confidence intervals between the GFT and ILI surveillance

systems (Table 3).

Updated GFT Model Performance during 2010–2012
Correlations between the updated GFT model and ILI data

during the first two years of prospective post-pandemic surveil-

lance were high at the national level during the 2010/2011

(R2 = 0.95) and 2011/2012 (R2 = 0.88) seasons (Table 4). At the

regional level, there was high correlation in 2010/2011 (R2 = 0.83)

with a slight underestimation of incidence, and low correlation in

2011/2012 (R2 = 0.37) with a slight overestimation of ILI

incidence (Figure 1B). At the New York City level, updated

GFT estimates for 2010/2011 were reasonably well correlated

with observed ILI (R2 = 0.74), though with ILI surveillance

increasing and peaking earlier (Figure 1C), and showing an

improved lagged correlation (R2 = 0.80, lagged 1 week; Table 4).

Updated GFT Model Performance during the 2012/2013
Season

For the relatively early and moderately severe 2012/2013

epidemic season, observed GFT estimates greatly overestimated

the initial onset week and magnitude of the outbreak at all three

geographical levels (Figure 1; Table 2). The correlations between

the updated GFT model estimates and ILI surveillance, however,

were very high at all levels (R2$0.86, Table 4). GFT model

estimates of epidemic intensity were far greater than ILI

surveillance data at the national (268%), regional (208%) and

local (296%) levels (Table 3). Accordingly, the slopes of the weekly

regression of ILI surveillance against GFT estimates during 2012/

2013 (United States, slope = 1.91; Mid-Atlantic, slope = 2.29; New

York City, slope = 2.63) were far greater than those for other

epidemic and pandemic seasons (Figure 3), and substantially

different from a slope of 1 (p,0.05).

Discussion

Following Google’s development of GFT in 2008, and the

considerable excitement generated by the original publication and

release of the online tool [12,13,16], concerns were raised

regarding the tenuous relationship between internet searches and

the presentation of illness to clinical or emergency medical

providers [17]. We used clinical ILI surveillance data at local,

regional and national scales as a proposed ‘‘ground truth’’ to test

the ability of GFT to perform as a timely and accurate surveillance

system in the US. We identified substantial errors in GFT

estimates of influenza timing and intensity in the face of pandemic

and seasonal outbreaks, including prospectively missing the early

wave of the 2009 pandemic and overestimating the impact of the

2012/2013 epidemic. Although we are not the first to report issues

in GFT estimates for seasonal and pandemic influenza [22], our

study is the first to carefully quantify the performance of this

innovative system over a full decade of influenza activity and

across three geographical scales.

The 2009 A/H1N1 pandemic is a particularly important case

study to test the performance of GFT, with its unusual signature

pandemic features of out-of-season activity in the spring of

2009, atypical (young) age pattern of cases, recurring waves and

substantial geographic heterogeneity [34–38]. Immediately

following the spread of the pandemic virus in the US, public

health officials and electronic surveillance networks found that

local and state level surveillance data did not correspond with

estimates provided by the original GFT model, particularly in

some urban areas and harder hit regions of the Northeastern

and Midwestern US [18,39]. Clearly, the original GFT

algorithm was not able to track sentinel ILI patterns that

deviated from the influenza seasons that occurred during the

model-fitting period. Even after the GFT algorithm was revised

in September 2009, we have shown that the retrospective

estimates for the spring 2009 pandemic wave were still not in

agreement with regional and local surveillance. Further, the

updated GFT model that has been used prospectively failed to

accurately capture the autumn 2009 pandemic wave in New

York City, presenting the outbreak three weeks before it actually

occurred. This assessment echoes earlier concerns regarding the

timeliness and accuracy of internet search data for public health

monitoring at the local level [17] and during the early wave of

the 2009 pandemic [18]. To have missed the early wave of the

2009 pandemic is a serious shortcoming of a surveillance system

– as these are times when accurate data are most critically

needed for pandemic preparedness and response purposes.

Although the GFT system provided relatively accurate estimates

during post-pandemic years which were characterized by mild

influenza activity, it overestimated the 2012/2013 epidemic by 2–

3 fold relative to traditional ILI surveillance systems, across

national, regional and local geographical levels in the US (see also

[22]). While the intensity of the 2012/2013 influenza season was

roughly comparable to the 2003 A/H3N2-Fujian epidemic as

measured by traditional surveillance and assessed by CDC as

‘‘moderately severe’’ [2], the 2012/2013 season was scored by the

GFT tool as by far the most severe epidemic in over a decade.

A limitation of our study is its focus on US systems. Many

international syndromic, physician consultation, laboratory and

internet survey surveillance systems provide rapid, detailed and

accurate influenza-related surveillance [3–5,40–48]. These systems

allowed for development of GFT search query algorithms which

were trained to mimic the specific regional influenza-related

patterns [16]. While international GFT search query estimates are

publically available earlier than many government run surveillance

systems, it is important to note that public health data typically

undergo monitoring for data quality and investigation prior to

public release. It is also important to note that GFT has been set

up where robust surveillance systems already exist, providing ILI

search query data for populations that are already under

surveillance.

Reassessing Google Flu Trends: A Comparative Study

PLOS Computational Biology | www.ploscompbiol.org 8 October 2013 | Volume 9 | Issue 10 | e1003256



An additional limitation of our study is the imperfect nature of

our assumed ‘‘ground truth’’ surveillance. Our study sought to

assess the ability of GFT to estimate physician consultation and

syndromic ILI surveillance patterns, not necessarily the true

incidence of influenza infection and illness. We recognize that

physician sentinel and syndromic data can be biased, particularly

during periods of heightened public health concern. This has been

well described in a study of online survey data and health-seeking

behavior during the two waves of the 2009 pandemic in England

[48]. This recognized bias highlights the need for multiple sources

of surveillance information in the community.

In a previous evaluation of GFT, the authors and engineers at

Google and the US CDC concluded that their original GFT

model had ‘‘performed well prior to and during’’ the 2009

pandemic, when assessed as simple correlations at national and

regional levels [14]. Regarding this measure of performance,

however, we found the use of simple correlation to be inadequate,

as values greater than 0.90 often occurred during periods when

critical metrics such as peak magnitude and cumulative ILI

revealed that the GFT models were actually greatly under- or

over-estimating influenza activity. Our study demonstrates that

simple correlation measures can mischaracterize the performances

of a novel surveillance system, and instead we recommend the use

of additional and alternative metrics based on estimates of onset

and peak timing and cumulative intensity of influenza epidemics.

Because the search algorithm and resulting query terms that

were used to define the original and updated GFT models remain

undisclosed, [13,14], it is difficult to identify the reasons for the

suboptimal performance of the system and make recommenda-

tions for improvement. Concerns were raised early-on that the

data-mining nature of GFT might over-fit the historical data and

introduce bias in prospective use [17]. After the original GFT

model missed the spring 2009 pandemic wave – an outbreak with

different timing and characteristics than the outbreaks present in

the retrospective model-fitting period – the GFT algorithm was

modified, potentially addressing the possible over-fitting issue. The

revised GFT model, however, appeared to be susceptible to bias in

the opposite direction, possibly due to changes in health

information searching and care seeking behavior driven by the

media. Further, important epidemiologic information such as

patient age, location, illness complaint or clinical presentation

remain un-available in GFT (an adult person could be performing

a search on behalf of a sick minor in another state). In contrast,

public health information systems are less prone to such biases, as

they collect demographic and geographic data as well as additional

health outcomes, which can be used to investigate atypical signals.

Ultimately, public health actions are taken locally. As such, the

accuracy and timeliness of local disease surveillance systems are

critical; as is the utility of the information in supporting decisions.

The additional detail in local syndromic ILI surveillance data, and

its direct link to individuals seeking care, facilitates public health

action. Computerized surveillance, such as the New York City

syndromic chief complaint ED system, can accurately capture the

impact of influenza activity [25,26]. In the present study, we have

shown that these systems are more accurate than, yet equally

timely as the GFT tool, which indicates the need for further

research and support for computerized local disease surveillance

systems.

We believe there is a place for internet search query monitoring

in disease surveillance, and for continued research and develop-

ment in this area [13–21,49–58]. For now, in the US CDC’s

national and regional ILI surveillance data remain the ‘‘ground

truth’’ source of influenza activity at national and regional levels,

but timeliness, detail and coverage remain issues. Thus, we believe

there is a broader need for electronic clinically-based disease

surveillance at the local level, similar to the ED system in place in

New York City [25–27], and for collaborative and distributed

networks connecting these systems for research and practice

[39,58–60]. Careful evaluation of the strengths and limitations of

GFT and other innovative surveillance tools should be expanded

to encompass a range of developed and developing country

settings, following the approach proposed here, in order to

Figure 3. Scatter plots of weekly excess influenza-like illness (ILI) visit proportions against updated Google Flu Trends (GFT) model
search query estimates, 2003–2013. Weekly excess percent-ILI is calculated as Serfling estimates subtracted from observed proportions. Plots
show updated GFT model estimates compared with weighted CDC ILI-Net data for (A) the United States, and (B) Mid-Atlantic HHS-2 Region States
(New Jersey, New York), and local ILI surveillance from emergency department ILI visit data for (C) New York City. Plots are shown for weeks June 1,
2003 to April 25, 2009 (grey circles), April 26 to January 2, 2010 (red diamonds), January 3, 2010 to Oct 6, 2012 (grey squares), and October 7, 2012 to
March 30, 2013 (blue triangles). Lines representing equivalent axes for X = Y are shown (grey dashed line). Regression lines are shown for the 2003/
2004–2008/2009 seasons (black line), 2009 pandemic (red line), 2010/2011–2010/2012 seasons (grey solid line) and the 2012/2013 season (blue line).
doi:10.1371/journal.pcbi.1003256.g003
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improve local, regional and global outbreak surveillance methods

and inform public health responses. The way forward using high

volume search query data such as GFT may be through

integration of near-real time electronic public health surveillance

data, improved computational methods and disease modeling –

creating systems that are more transparent and collaborative, as

well as more rigorous and accurate, so as to ultimately make them

of greater utility for public health decision making.
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