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Supplementary Figure 1: Chemical compound space. Errors depending on the size of the training set for
models with T = 1, 2, 3 interaction passes trained on GDB-9. (a) Mean absolute error of neural networks
depending on the number of training examples. Error bars correspond to standard errors over five repetitions. For
more than 5k examples, the error bars vanish due to standard errors below 0.05 kcal mol−1. (b) Error distribution
for models trained on 10k, 25k, 50k and 100k training examples. The box spans between the 25% and 75%
quantiles, while the whiskers mark the 5% and 95% quantiles.
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Supplementary Figure 2: Molecular dynamics. Errors depending on the size of the training set for models
with T = 1, 2, 3 interaction passes trained on the Benzene data set. (a) Mean absolute error of neural networks
depending on the number of training examples. Error bars correspond to standard errors over five repetitions. For
more than 10k examples, the error bars vanish due to standard errors below 0.01 kcal mol−1. (b) Error distribution
for models trained on 10k, 25k, 50k and 100k training examples. The box spans between the 25% and 75%
quantiles, while the whiskers mark the 5% and 95% quantiles.
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Supplementary Figure 3: Distribution of atomic energy contributions Ei in the GDB-9 data set. The en-
ergy contributions were predicted using the GDB-9 model with two interaction passes trained on 50k reference
calculations.
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Supplementary Figure 4: List of 6-membered carbon rings ordered by the sum of energy contributions of
the ring atoms. The energy contributions were predicted using the GDB-9 model with three interaction passes
trained on 50k reference calculations. Energy contributions are given in kcal mol−1.
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Supplementary Figure 5: An alchemical path of the DTNN trained on 50k GDB-9 reference calculations
with T = 2. The DTNN model is able to smoothly create, remove and move atoms as well as continuously change
their element-specific characteristics. A path leading from benzene to s-triazine was computed by only changing,
removing and changing types of atoms (blue). In the second path (orange), atoms were also moved to the new
equilibrium positions. The black dots mark the energy of DFT reference calculations.
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Supplementary Figure 6: Top-10 largest prediction errors on the GDB-9 model with two interaction passes
trained on 50k reference calculations.
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Supplementary Figure 7: Prediction time needed for a molecule depending on the number of atoms and
number of interaction passes T of the employed DTNN. All predictions were computed on an NVIDIA Tesla
K40 GPU.
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Supplementary Figure 8: Illustration of how the surface plots are obtained from a trained network as shown
in Fig. 1. The deep network can be interpreted as representing a local potential ΩM

A (r) created by the atoms of the
molecule. Putting a probe atom A with nuclear charge z at a position r described by the distances to the atoms of
the molecule d1, . . . , dn yields an energy Eprobe.
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Supplementary Table 1: Errors of neural networks with up to three interaction passes for various data sets
and numbers of reference calculations used in training

Data set # training data T=1 T=2 T=3
MAE RMSE MAE RMSE MAE RMSE

[kcal mol−1] [kcal mol−1] [kcal mol−1] [kcal mol−1] [kcal mol−1] [kcal mol−1]

GDB-7 a 5768 1.28 ± 0.04 1.99 ± 0.14 1.04 ± 0.02 1.43 ± 0.02 1.04 ± 0.01 1.45 ± 0.01

GDB-9 b 25k 1.61 ± 0.02 2.31 ± 0.02 1.09 ± 0.01 1.62 ± 0.02 1.04 ± 0.02 1.53 ± 0.02
50k 1.49 ± 0.02 2.14 ± 0.03 0.96 ± 0.01 1.37 ± 0.03 0.94 ± 0.01 1.37 ± 0.01

100k 1.54 ± 0.03 2.17 ± 0.04 0.93 ± 0.02 1.33 ± 0.03 0.84 ± 0.02 1.21 ± 0.02

Benzene b 25k 0.07 ± 0.00 0.10 ± 0.00 0.05 ± 0.00 0.06 ± 0.00 0.04 ± 0.00 0.06 ± 0.00
50k 0.06 ± 0.00 0.08 ± 0.00 0.04 ± 0.00 0.05 ± 0.00 0.04 ± 0.00 0.05 ± 0.00

100k 0.07 ± 0.00 0.10 ± 0.00 0.05 ± 0.00 0.06 ± 0.00 0.05 ± 0.00 0.06 ± 0.00

Toluene b 25k 0.48 ± 0.01 0.63 ± 0.01 0.20 ± 0.00 0.28 ± 0.00 0.23 ± 0.00 0.31 ± 0.01
50k 0.44 ± 0.00 0.59 ± 0.01 0.18 ± 0.00 0.24 ± 0.00 0.18 ± 0.00 0.24 ± 0.00

100k 0.42 ± 0.01 0.56 ± 0.01 0.16 ± 0.00 0.21 ± 0.00 0.17 ± 0.00 0.22 ± 0.00

Malonaldehyde b 25k 0.54 ± 0.00 0.74 ± 0.00 0.23 ± 0.00 0.34 ± 0.00 0.23 ± 0.00 0.33 ± 0.00
50k 0.49 ± 0.01 0.68 ± 0.01 0.20 ± 0.00 0.28 ± 0.00 0.19 ± 0.00 0.27 ± 0.00

100k 0.51 ± 0.01 0.70 ± 0.01 0.18 ± 0.00 0.25 ± 0.00 0.17 ± 0.00 0.24 ± 0.00

Salicylic acid b 25k 0.80 ± 0.02 1.05 ± 0.03 0.54 ± 0.02 0.72 ± 0.03 0.79 ± 0.02 1.03 ± 0.03
50k 0.73 ± 0.01 0.94 ± 0.01 0.41 ± 0.00 0.54 ± 0.00 0.50 ± 0.01 0.65 ± 0.01

100k 0.67 ± 0.01 0.88 ± 0.01 0.39 ± 0.01 0.51 ± 0.01 0.42 ± 0.01 0.54 ± 0.01

Mean absolute errors (MAE), root mean squared errors (RMSE) as well as respective standard errors of the mean are printed.
The maximum error over all folds is given. Best results are printed in bold.
a10% of the reference calculations are used as validation set for early stopping.
b1k reference calculations are used as validation set for early stopping.
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Supplementary Table 2: Training duration for the presented neural networks with up to three interaction
passes (T = 1, 2, 3)

Data set # training examples T = 1 T = 2 T = 3

GDB-7 5768 6 7 8

GDB-9 25k 28 35 42
50k 55 71 82

100k 110 139 162

Benzene 25k 21 27 32
50k 44 53 61

100k 84 104 121

Toluene 25k 24 27 32
50k 45 55 64

100k 88 108 127

Malonaldehyde 25k 21 25 29
50k 41 52 59

100k 85 106 117

Salicylic acid 25k 22 31 32
50k 44 54 65

100k 91 109 125
All durations in hours. All models were trained using stochastic
gradient descent with momentum for 3.000 epochs on an NVIDIA
Tesla K40 GPU.
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Supplementary Discussion

Performance depending on number of reference calculations and interaction passes
Supplementary Figs. 1 and 2 show the dependence of the performance on the number of training examples for
the benzene MD data set and GDB-9, respectively. In both learning curves (a), an increase from 1.000 to 10.000
training examples reduces the error drastically while another increase to 100.000 examples yields comparatively
small improvement. The error distributions (b) show that models with two and three interaction passes trained on at
least 25.000 GDB-9 references calculations predict 95% of the unknown molecules with an error of 3.0 kcal mol−1

or lower. Correspondingly, the same models trained on 25.000 or more MD reference calculations of benzene
predict 95% of the unknown benzene configurations with a maximum error lower than 1.3 kcal mol−1.

Beyond a certain number of reference calculations, the models with one interaction pass perform significantly
worse in all theses respects. Thus, multiple interaction passes indeed enrich the learned feature representation as
demonstrated by the increased predictability of previously unseen molecules.

Relation to convolutional neural networks
In a convolution layer, local filters are applied to local environments, e.g., image patches, extracting features
relevant to the classification task. Similarly, local correlations of atoms may be exploited in a chemistry setting.
The atom interaction in our model can indeed be regarded as a non-linear generalization of a convolution. In
contrast to images however, atoms of molecules are not arranged on a grid. Therefore, the convolution kernels
need to be continuous. We define a function Ct : R3 → RB yielding ct

i = Ct(ri) at the atom positions. Now, we can
rewrite the interactions as

Ct+1(ri)k = Ct(ri)k +
∑
j,i

h( f (r j)kg(‖r j − ri‖)k), (1)

with
f (r j) = WcfCt(r j) + bf1 , (2)

g(di j) = Wdfd̂ij + bf2 , (3)

h(x) = tanh(W fcx). (4)

For h being the identity, the sum is equivalent to a discrete convolution of f and g.

Supplementary Methods

Computing an alchemical path with the DTNN
The alchemical paths in Supplementary Fig. 5 were generated by gradually moving the atoms as well as inter-
polating between the initial coefficient vectors for changes of atom types. Given two nuclear charges A, B, the
coefficient vector for any charge Zi = αiA + (1 − α)B with 0 ≤ α ≤ 1 is given by

cZi = αicA + (1 − αi)cB. (5)

Similarly, in order to add or remove atoms, we introduce fading factors β1, . . . , βn ∈ [0, 1] for each atom. This way,
influences on other atoms

c(t+1)
i = c(t)

i +
∑
j,i

β jv(c(t)
j ,Di j) (6)

as well as energy contributions to the molecular energy E =
∑n

i=1 βiEi can be faded out.
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